
Chapter 1
Managing Design Change with Functional
Blueprints

Jacob Beal1, Aaron Adler1, Fusun Yaman1, Jeffrey Cleveland1, Hala Mostafa1,
Annan Mozeika2, Kyle Usbeck1, Gretchen Markiewicz1, Benjamin Axelrod2

Abstract Long-lived complex electromechanical systems, such as vehicles or in-
dustrial machinery, often need to be adapted for new uses or new environments.
Adapting the design for such a system is frequently complicated by the fact that they
are often tightly integrated, such that any change will have consequences throughout
the design, and must take many different aspects of the system into consideration.
Functional blueprints simplify adaptation by incorporating the reasons for design
decisions and their consequences directly into the specification of a system. This
allows a human designer to be supported by automated reasoning that can iden-
tify potential conflicts, suggest design fixes, and propagate changes implicit in the
choices of the designer. This chapter presents the functional blueprints approach in
detail, including both review of prior work and new results.

1.1 Introduction

Complex electromechanical designs, such as robots, vehicles, and industrial ma-
chinery, tend to be “brittle,” meaning that it is often difficult to modify any signifi-
cant aspect of the design without triggering a cascade of complex, difficult to pre-
dict and often costly changes. Such cascading changes are the result of interlocking
constraints between elements that are modified and other parts of the design. An

1Jacob Beal Aaron Adler, Fusun Yaman, Jeffrey Cleveland, Hala Mostafa, Kyle Usbeck, Gretchen
Markiewicz
Raytheon BBN Technologies, Cambridge, MA, USA, e-mail: {jakebeal, aadler, fusun, jcleveland,
hmostafa, kusbeck, gmarkiew}@bbn.com
2Annan Mozeika, Benjamin Axelrod
iRobot Corporation, Bedford, MA, USA, e-mail: {amozeika,baxelrod}@irobot.com

Portions of the material presented in this chapter has previously appeared as [1, 2, 3, 4, 5]. Spon-
sored by DARPA under contract W91CRB-11-C-0052; views and conclusions contained in this
document are those of the authors and not DARPA or the U.S. Gov’t.

1

2 Jacob Beal, et al.

expert engineer, in fact, would likely consider many of these consequential changes
to actually be keeping the design the same. When considered from the viewpoint of
knowledge representation, a contradiction of this sort, where complex changes are
required to keep a property the same, often indicates a critical flaw in representation.

If system specifications were more closely aligned with the ways in which human
experts conceive of and work with designs, then many consequential changes would
be either implicit from the specification or simple to automate. This would facilitate
the development of design automation systems capable of making similar judge-
ments about how to best maintain design integration in the face of changes. For
complex electromechanical systems, such as aerospace vehicles, such tools might
be able to significantly decrease the time and cost of both initial development and
through-life upgrades and servicing. At the lower end of the complexity scale, such
tools could enable simpler systems such as tactical ground robots to be rapidly mod-
ified in the field by operational experts in response to their evolving needs.

Functional blueprints [1] are a representation aimed at providing such adapt-
ability, inspired by biological development. Functional blueprints capture expert
knowledge by specifying a design as a set of behavioral goals and topological con-
straints and a method for incrementally adjusting the design when those goals or
constraints are not being met. This chapter introduces the concept of functional
blueprints and their application to electromechanical design. In particular, the work
presented here focuses on robotic design, where systems are typically complex and
highly integrated, yet relatively small and inexpensive, using an example robot sim-
ilar to the iRobot LANdroid, but simpler and less expensive, called the “miniDroid.”
Section 1.2 introduces the functional blueprint concept and how it can be applied to
electromechanical design. Section 1.3 then examines how interacting networks of
functional blueprints can be used to generate both parametric and qualitative adap-
tation of a design. Section 1.4 discusses extensions to these approaches that can
enable greater design plasticity. Finally, Section 1.5 discusses currently feasible ap-
plications and presents key open problems.

1.1.1 Comparison with Alternate Approaches

Design automation for electrical and mechanical systems has a long history, in
which many significant results have been attained (e.g., [6], [7], [8]). A number
of evolutionary methods have also been developed (e.g., [9], [10]). Applications
have been limited, however, primarily due to the complexity and lack of smooth-
ness in the design spaces that must be searched. Commercial modeling and simula-
tion tools have thus been generally restricted to parametric exploration of relatively
simple subsystems (e.g., [11]). Constraint-based local search methods, such as Kan-
garoo [12] and Comet [13], attempt to address this problem by using local parameter
changes to minimize constraint violations, similar to functional blueprints but with-
out their encoded knowledge of local repair strategies.

1 Managing Design Change with Functional Blueprints 3

(a) iRobot Warrior (b) iRobot PackBot

(c) iRobot SUGV (d) iRobot LANdroid

Fig. 1.1 Families of engineered systems often exhibit “phylogenetic” relationships similar to
those of natural organisms. For example, these four iRobot products share a base “body plan,”
including symmetric two-wheel treads, flippers coaxial with one wheel, and a top-mounted sen-
sor/manipulator package.

Control theory also addresses problems of system integration, but generally has
difficulty with large numbers of non-linearly interacting parts. A notable exception
may be viability theory [14], but its applicability is limited as it requires a system to
be specified completely in terms of differential equations.

Other approaches to adaptive design of functional structures includes work
on distributed adaptive construction [15, 16, 17], and various projects in self-
reconfigurable robotics e.g., [18, 19, 20]. These approaches, however, are generally
intended for more homogeneous and loosely coupled systems and would be difficult
to adapt to electromechanical design. Recent work on “morphogenetic engineering”
as proposed by Doursat in [21] and for robotics in [22] and [20], aims to support
more heterogeneous systems. In particular, Doursat has laid out a framework for
evolvable pattern formation [23], while Meng et al. generate patterns coordinating
the configuration of a modular robot [24]. A more formal mathematical model can
be found in [25], though the representational consequences are not yet explored.

4 Jacob Beal, et al.

1.2 Functional Blueprints

Functional blueprints, as defined in [1], specify a design in terms of behavioral goals
and a method for adjusting the structure when those goals are not met, rather than a
fixed structure. The approach is inspired by animal development, in which feedback
processes maintain continuous integrated functionality across diverse subsystems
such as muscles, nerves, and blood vessels as the animal grows from an embryo to a
mature adult, despite the fact that the relationship and relative sizes of the elements
making up these subsystems may change radically over time. Such decentralized
adaptation is a critical enabler for the evolution of natural systems [26, 27].

Perhaps surprisingly, engineered systems also often show a family resemblance
reminiscent of natural phylogeny, as in the iRobot product family shown in Fig-
ure 1.1, to which also belongs the “miniDroid” robot (Figure 1.3) used as a run-
ning example through the remainder of this chapter. This is due to the preference
of human engineers to adapt functioning designs rather than to build from scratch.
Functional blueprints aim to build on this parallel to enable engineered designs to
exhibit the same power of facilitated change as is exhibited by natural systems.

Based on the feedback model of angiogenesis [28] and similar processes, a func-
tional blueprint is thus defined as a collection of four elements: 1) a system behavior
that degrades gracefully across some range of viability, 2) a stress metric quantify-
ing the degree and direction of stress on the system, 3) an incremental program
that relieves stress through growth, shrinking, or other structural change, and 4) a
program to construct an initial viable minimal system.

In essence, this model uses stress as a coordinating signal by which indepen-
dently developing subsystems are integrated. The stress metric and incremental
program combine to shift the design back toward required functionality; graceful
degradation ensures that there is a margin for error in the interactions between sub-
systems, and the minimal system ensures there is a viable place to start. A network
of interacting functional blueprints may thus be viewed as a piecewise specification
of a parametric model. Moreover, unlike a typical parametric model, this approach
does not require a closed-form relationship between parameters.

1.2.1 Application to Electromechanical Design

The Morphogenetically Assisted Design Variation (MADV) architecture shown in
Figure 2(a) applies the functional blueprint concept to the problem of electrome-
chanical design adaptation [3]. Under this architecture, electromechanical designs
are adapted following a three-phase loop: the current model is run through a set
of functional blueprint evaluators to determine stress on each functional blueprint;
from these stresses come requested adjustments of the design, which are blended
together to produce an incrementally updated design. The loop continues to iterate
until the design reaches a stable point—at zero stress if adaptation succeeds, and
greater than zero if it runs into a contradiction it cannot resolve.

1 Managing Design Change with Functional Blueprints 5

!"#$%&'

($&)*+'!"#),-./"+'

!$01)-'!'201$&&'

3%$+#'201$&&$&'

45-60'73&'

45-60'89#.0$&'

!':611$+0''
''''($&)*+'

"'89#.0$#'
''''($&)*+'

#$4;.%6./"+'
''''!$01)-&'

4;.%6./"+'

:"<9"+$+0'=)>1.1)$&'
?#$+/0@'A$%./"+&'

2)<6%./"+'4;.%6./"+&'
B">&0.-%$'-"61&$&C'

8&$1'!"#),-./"+&'

(a) MADV architecture

(b) Prototype user interface

Fig. 1.2 (a) MADV architecture: designs are adapted following a three-phase loop: the current
model is run through evaluators to determine stress on each functional blueprint; from these stresses
come requested adjustments of the design, which are blended together to produce an incrementally
updated design. (b) Screenshot of prototype MADV software

Users control design variation either directly by modifying parameters, or indi-
rectly through modifications of the environment for simulation-based evaluations
(e.g., changing the height of an obstacle that a robot is expected to climb over
through a user interface like that in Figure 2(b)). In either case, this modification
injects stress into the system, which causes the values to begin adjusting toward a
new equilibrium. The user of the architecture can then observe the ongoing process

6 Jacob Beal, et al.

of adaptation to the new requirement, adjusting their specifications if they prove in-
feasible or giving hints to help the system if it gets stuck. When the user is satisfied,
the final design can then be exported for further refinement or for fabrication.

For the work discussed here, the functional blueprints for electromechanical
designs fall into four categories (presented in detail in [3]): 1) simulation-based
blueprints measuring the ability of the system as a whole to accomplish a task (e.g.,
a robot climbing a step); 2) families of COTS components (e.g., a collection of
servo motors with various torque limits); 3) closed form relations (e.g., the iden-
tity relation between mass, density, and volume, the inequality between the vertical
dimensions of a motor and of the robot body that contains it, or a functional spec-
ification requiring total mass less than a certain amount); and 4) user modification
(e.g., a request to double the height of the step that can be climbed).

The collection of functional blueprints are integrated to form a complete network
using a manifold-based representation that mixes geometric and topological ele-
ments [2, 4]. This allows the representation to include both architectural decisions
(in the form of topological constraints and symmetries), geometric commitments (in
the form of parametric values and geometry-based constraints), and functionality (in
the form of functional blueprint constraints).

Finally, because parameters may have very different magnitudes, and because
multiple functional blueprints may act on the same parameter, functional blueprints
as implemented for MADV act on parameters only by expressing a stress in the
range of [0,1] and a direction; the combination of stresses then produce value
changes according to an adaptive process as described in Section 1.3.1.

Discussion and examples of applying the MADV architecture will largely focus
on the miniDroid robot, shown in Figure 1.3. This system was created by iRobot,
based on the LANdroid from the robot family shown in Figure 1.1 and slightly ex-
panded and simplified to be a better target for investigation of adaptive design. Much
of the work discussed in this chapter has been carried out using the miniDroid as a
driving electromechanical design example, and it will thus be used as a running ex-
ample. Figure 1.4 shows a functional blueprint network representing the miniDroid,
including all design features at least 1 cm3 in volume. In total, this comprises 23
components, 112 design parameters and 111 functional blueprints. Of the func-
tional blueprints, three (step-climbing, self-righting, and fast driving) are evaluated
with simulations implemented using ROS (Robot Operating System) [29] and the
Gazebo simulator, while the remainder are either closed-form or represent COTS
components.

1.2.2 Diagnosis and Assistive Design

Functional blueprint representations of electromechanical design can also pro-
vide useful services at lower levels of automation. In particular, since functional
blueprints capture the intentions and requirements of a design, they can be used to
assist a human designer with diagnosis of problems and suggestions for their solu-

1 Managing Design Change with Functional Blueprints 7

(a) miniDroid prototype (b) CAD design

(c) Step-climbing simulation

Fig. 1.3 miniDroid base robot design, in CAD (b) and reality (a). (c) Screenshot from a miniDroid
simulation in ROS.

tions. This is a much less radical change to existing processes than automatic adap-
tation, yet still addresses many of the key challenges that motivate the investigation
of automatic adaptation.

Figure 1.5 shows an example of a transcript from a prototype functional blueprint
diagnosis system. The text for the explanations is generated automatically from the
structural relations encoded in the functional blueprints and the parameters they
interact with. These explanations may be able to clarify the relations of a design to
a human, and could form the basis of “expert adviser” systems for assisting domain
experts in adapting designs.

8 Jacob Beal, et al.

QUANTIZED-COMPONENT

CPU_MASS
Value = 0.04

CPU_POWER
Value = 0.01

CPU_Z
Value = 0.015

CPU_Y
Value = 0.0533

CPU_X
Value = 0.0686

UNIT-IDENTITY

WHEEL_MOTOR_Z
Value = 0.01981

WHEEL_MOTOR_Y
Value = 0.03683

WHEEL_MOTOR_YZ

IDENTITY-RELATION

BOT_BODY_LENGTH_Y
Value = 0.114300005

BOT_BODY_LENGTH_X
Value = 0.17779998

COMPOSITE-SUM-BOUND

WHEEL_DIAMETER
Value = 0.05588

WHEEL_CLEARANCE
Value = 0.00635

BOT_BODY_LENGTH_Z
Value = 0.0381

COMPOSITE-SUM-BOUND

UNIT-IDENTITY

PROXIMITY_SENSOR_Y
Value = 0.03

PROXIMITY_SENSOR_X
Value = 0.014

PROXIMITY_SENSOR_XY

COMPOSITE-SUM-BOUND

FLIPPER_LENGTH_Z
Value = 0.0254

COMPOSITE-SUM-BOUND

STRUCTURE_THICKNESS
Value = 0.0040639997

UNIT-IDENTITY

BATTERY_Z
Value = 0.028

BATTERY_Y
Value = 0.014

BATTERY_YZ

QUANTIZED-COMPONENT

FLIPPER_ENCODER_MASS
Value = 0.01

FLIPPER_ENCODER_POWER
Value = 0.01

FLIPPER_ENCODER_Z
Value = 0.011

FLIPPER_ENCODER_Y
Value = 0.02

FLIPPER_ENCODER_X
Value = 0.011

UNIT-IDENTITY

BOT_BODY_LENGTH_XYZ

COMPOSITE-SUM-BOUND

BOT_BODY_MASS

COMPOSITE-SUM-BOUND

FLIPPER_AXLE_GEAR_DIAMETER
Value = 0.02921

UNIT-IDENTITY

POWER_SUPPLY_BOARD_Y
Value = 0.028

POWER_SUPPLY_BOARD_X
Value = 0.028

POWER_SUPPLY_BOARD_XYCOMPOSITE-SUM-BOUND

UNIT-IDENTITY

FLIPPER_MOTOR_Y
Value = 0.03683

FLIPPER_MOTOR_X
Value = 0.03988

FLIPPER_MOTOR_XY

COMPOSITE-SUM-BOUND

FLIPPER_AXLE_DIAMETER
Value = 0.0081279995

COMPOSITE-SUM-BOUND

WHEEL_Y
Value = 0.057404004

UNIT-IDENTITY

FLIPPER_ENCODER_XY

COMPOSITE-SUM-BOUND

UNIT-IDENTITY

FLIPPER_LENGTH_Y
Value = 0.012064997

FLIPPER_LENGTH_X
Value = 0.1397

FLIPPER_LENGTH_XY

COMPOSITE-SUM-BOUND

IDENTITY-RELATION

WHEEL_MOTOR_MAX_SPEED
Value = 8.055366073904434d0

UNIT-IDENTITY

CPU_XZ

UNIT-IDENTITY

ON_OFF_BUTTON_Y
Value = 0.018

ON_OFF_BUTTON_X
Value = 0.018

ON_OFF_BUTTON_XY

COMPOSITE-SUM-BOUND

WHEEL_SEPARATION
Value = 0.082042

BATTERY_X
Value = 0.0505

UNIT-IDENTITY

POWER_SUPPLY_BOARD_Z
Value = 0.005

POWER_SUPPLY_BOARD_XZ

IDENTITY-RELATION

WHEEL_MOTOR_POWER
Value = 1.5

WHEEL_MOTOR_TORQUE
Value = 1.2160246

COMPOSITE-SUM-BOUND

IDENTITY-RELATION

WHEEL_MOTOR_MASS
Value = 0.0618

UNIT-IDENTITY

PROXIMITY_SENSOR_Z
Value = 0.013

PROXIMITY_SENSOR_XZ

UNIT-IDENTITY

FLIPPER_ENCODER_YZ

COMPOSITE-SUM-BOUND

WHEEL_MOTOR_X
Value = 0.03988

MODULAR-RELATION

FLIPPER_ROTATIONAL_SPEED

FLIPPER_MOTOR_GEAR_MULTIPLIER

FLIPPER_MOTOR_TORQUE
Value = 1.2160246

IDENTITY-RELATION

WHEEL_MOTOR_XYZ

UNIT-IDENTITY

FLIPPER_LENGTH_XZ

UNIT-IDENTITY

WHEEL_MOTOR_XZ

IDENTITY-RELATION

FLIPPER_MOTOR_MAX_SPEED
Value = 8.055366073904434d0

COMPOSITE-SUM-BOUND

MODULAR-RELATION

STEP_HEIGHT
Value = 0.1016

UNIT-IDENTITY

FLIPPER_MOTOR_Z
Value = 0.01981

FLIPPER_MOTOR_XZ

IDENTITY-RELATION

TRACK_MASS

TRACK_THICKNESS
Value = 0.0033019998

TRACK_LENGTH

IDENTITY-RELATION

FLIPPER_MOTOR_POWER
Value = 1.5

UNIT-IDENTITY

BATTERY_XZ

COMPOSITE-SUM-BOUND

IDENTITY-RELATION

FLIPPER_MOTOR_MASS
Value = 0.0618

IDENTITY-RELATION

BATTERY_ENERGY

BATTERY_MASS

UNIT-IDENTITY

CPU_YZ

MODULAR-RELATION

COMPOSITE-SUM-BOUND

IDENTITY-RELATION

FLIPPER_MOTOR_XYZ

UNIT-IDENTITY

ON_OFF_BUTTON_Z
Value = 0.0076200003

ON_OFF_BUTTON_YZ

IDENTITY-RELATION

BATTERY_XYZ

COMPOSITE-SUM-BOUND

UNIT-IDENTITY

PROXIMITY_SENSOR_YZ

SUMMATION

PROXIMITY_SENSOR_RANGE
Value = 0.4

UNIT-IDENTITY

POWER_SUPPLY_BOARD_YZ

PROXIMITY_SENSOR_POWER
Value = 0.033

UNIT-IDENTITY

FLIPPER_MOTOR_YZ

COMPOSITE-SUM-BOUND

PROXIMITY_SENSOR_MASS
Value = 0.0036

UNIT-IDENTITY

UNIT-IDENTITY

FLIPPER_ENCODER_XZ

IDENTITY-RELATION

WHEEL_MASS

IDENTITY-RELATION

FLIPPER_AXLE_MASS

FLIPPER_AXLE_Y

COMPOSITE-SUM-BOUND

FLIPPER_AXLE_TORQUE_LIMIT

POWER_SUPPLY_BOARD_MASS
Value = 0.01

UNIT-IDENTITY

FLIPPER_LENGTH_YZ

COMPOSITE-SUM-BOUND

COMPOSITE-SUM-BOUND

UNIT-IDENTITY

UNIT-IDENTITY

ON_OFF_BUTTON_XZ

UNIT-IDENTITY

CPU_XYZ

IDENTITY-RELATION

STRUCTURE_MASS STRUCTURE_SURFACE

IDENTITY-RELATION

FLIPPER_MASSFLIPPER_LENGTH_XYZ

SUMMATION

ON_OFF_BUTTON_MASS
Value = 0.005

COMPOSITE-SUM-BOUND

UNIT-IDENTITY

PROXIMITY_SENSOR_XYZ

SUMMATION

CASE_ROUNDING_SURFACE_LOSS

BOT_BODY_LENGTH_YZ

BOT_BODY_LENGTH_XZ

BOT_BODY_LENGTH_XY

SUMMATION

UNIT-IDENTITY

UNIT-IDENTITY

POWER_SUPPLY_BOARD_XYZ

IDENTITY-RELATION

COMPOSITE-SUM-BOUND

UNIT-IDENTITY

FLIPPER_ENCODER_XYZ

UNIT-IDENTITY

IDENTITY-RELATION UNIT-IDENTITY

UNIT-IDENTITY

ON_OFF_BUTTON_XYZ

IDENTITY-RELATION

UPPER-BOUND

CASE_ROUNDING_DIAMETER
Value = 0.0254

IDENTITY-RELATION

COMPOSITE-SUM-BOUND

UPPER-BOUND

UPPER-BOUND

COMPOSITE-SUM-BOUND

IDENTITY-RELATION

UNIT-IDENTITY

IDENTITY-RELATION

IDENTITY-RELATIONCOMPOSITE-SUM-BOUND

IDENTITY-RELATION

COMPOSITE-SUM-BOUND

QUANTIZED-COMPONENT

COMPOSITE-SUM-BOUND

UNIT-IDENTITY

QUANTIZED-COMPONENT

COMPOSITE-SUM-BOUND

UNIT-IDENTITY

WHEEL_MOTOR_XY

COMPOSITE-SUM-BOUND

QUANTIZED-COMPONENT

UNIT-IDENTITY

BATTERY_XY

UNIT-IDENTITY

CPU_XY

COMPOSITE-SUM-BOUND

Fig. 1.4 Graph showing structure of functional blueprint relations between parameters, constraints,
and initial values for the miniDroid: blue is parameters with an explicit initial value, purple is
parameters whose value is inferred, green indicates constraint relations, and lines link constraints
to the parameters they affect.

Assuming fixed value for Instrument Package Mass and Instrument Package Volume

Detected 2 problems in current design (in descending order of importance):
Self Righting: Bot Body Length and Bot Body Mass are too large, relative to Flipper Motor Torque
Layout Geometry: Instrument Package Volume is too large, at 0.0100 Meters^3,

Should be significantly smaller than Bot Body Volume, which is 9.43e-4 Meters^3

Suggestions to fix design problems:
Decrease Bot Body Length from its current value of 0.200 Meters
Increase Flipper Motor Torque from its current value of 1.22 Newton-Meters
Increase Bot Body Volume from its current value of 9.43e-4 Meters^3

1

Fig. 1.5 Example transcript generated by electromechanical diagnostic system based on functional
blueprint representation.

1.3 Adapting Electromechanical Designs

Having captured the relationship between form and function as a network of func-
tional blueprints, integrated adaptation of an electromechanical design may then be
carried out as an iterative process of incremental adjustments. Many adaptations
can be effectively carried out entirely by parametric variation, adjusting effective
step size to optimize convergence speed while maintaining coherent design. Larger
scale changes in specification, however, may also require qualitative changes in the
collection of components making up the design.

1 Managing Design Change with Functional Blueprints 9

1.3.1 Convergence of Functional Blueprint Networks

Functional blueprints deliberately do not contain any specification of how they are
expected to interact with other functional blueprints: to do so would require an expo-
nential number of relationships to be considered and would prevent them from being
modular and capable to being reused in new designs. Instead, functional blueprints
interact indirectly, by changing parameters such that stress is induced in other func-
tional blueprints. That stress then induces those other functional blueprints to act,
which may induce other stress, etc., propagating changes through the design. This
raises a critical question, however: under what conditions is it possible to ensure that
the stress thus generated will converge and return to zero (meaning that an accept-
able adaptation has been found) in a reasonable amount of time?

The graceful degradation property of functional blueprints ensures that it is al-
ways possible to maintain the integration of a design. As proved in [1], it is always
possible to reduce step-size such that no parameter ever saturates on stress. This
does not, however, guarantee progress toward a user’s desired specifications. Con-
sider, for example, if one simultaneously requires a miniDroid to climb twice as tall
a step and to be small enough to fit in a pocket: this may simply be physically im-
possible. It is also possible that a path to a solution may exist, but that interactions
in the functional blueprint specifications may render it inaccessible to any particular
algorithm.

If all functional blueprints are linear in their interactions, then convergence can
be guaranteed, as demonstrated in [3]. Furthermore, the speed of convergence is
quite rapid, outperforming genetic algorithms by more than two orders of magni-
tude. In most electromechanical designs, however, many interactions are non-linear;
consider for example, that scale typically has a quadratic relation with strength and
cubic with mass. Navigation of the stress space may then be treated as a non-convex
optimization problem, around which there is already well-established literature. The
graceful degradation property of functional blueprints is helpful, as it ensures a rela-
tively smooth stress function with respect to any given parameter, and thus smooth-
ness in the joint space as well. Unfortunately, many non-convex methods are still ex-
tremely computationally expensive, particularly given simulation-driven functional
blueprints that lack a closed-form expression for the relationship between parame-
ters.

Even simple heuristic methods, however, appear to be able to support large-scale
variation in a real electromechanical design such as the miniDroid. One such heuris-
tic that has been investigated for balancing convergence speed versus stability is to
adaptively modify the size of each incremental adjustment of a parameter based on
global and local stress. Specifically, the heuristic for parameter adjustment is:

Sp = max
r
{sr,p} ·

∑r sr,p

∑r |sr,p|
SM = max

p
{|Sp|} ∆p = ε

Sp

SM
(1.1)

where the sr,p is the stress exerted by relation (functional blueprint) r on parameter
p and ε is the current incremental scaling factor for step size. The relative stress

10 Jacob Beal, et al.

on a parameter Sp is then proportioned based on the degree of conflict between the
stresses exerted on it by relations in the network, and the step size ∆p proportioned
based on the maximum stress SM in the network and the incremental factor ε . Fi-
nally, each parameter is changed by multiplying its current value by 1+∆p.

The size of ε is critical to convergence: the larger that ε is, the faster that the
system will converge, but if it is too large, then parameter values will oscillate and
possibly become unstable. The critical value for ε may be difficult or impossible
to determine statically (and indeed, may vary depending on parameter values). It is
therefore useful to adaptively select the value of ε based on the observed behavior
of the system. One simple heuristic which performs well is to examine the value
of stress over a k-sample window: if stress is steadily decreasing, then multiply ε

by 2; if more than some threshold amount of oscillation is observed, then divide ε

by 2. Figure 1.6 shows examples of stress rising and converging during large-scale
design adaptation using these heuristics (as well as qualitative design change at local
minima, as discussed in the next section). Note in particular the transitions between
oscillatory and smooth behavior, as ε is adjusted to attempt to control the rate of
descent.

Using lightweight heuristics such as these, the time to execute one iteration of
incremental adaptation is driven primarily by the cost of evaluating the functional
blueprints, particularly those that are evaluated by simulation. Here, it is possible
to greatly accelerate adaptation by exploiting the graceful degradation property of
functional blueprints. Typically, only a small fraction of the relations in a system
are simulation-driven functional blueprints; most others implement fast-evaluating
relations such as specifications (e.g., a system mass limit), identity relations (e.g.,
total mass being the sum of component mass), physical relations (e.g., mass equals
volume times density), or availability of components (e.g., dimensions vs. torque for
a family of COTS servo motors). Rather than compute simulations with every iter-
ation, the stress value of each simulation may be cached and reused, such that there
is only one simulation every n iterations. If the simulation has the required graceful
degradation property, then its stress should not change significantly in a short time,
so the rest of the network can continue adjusting while reducing the number of sim-
ulations required (and thus the approximate time) by a factor of n. Experiments have
shown that it is likely possible to obtain one to two orders of magnitude speed-up
with this mechanism, depending on the particulars of the design.

1.3.2 Parametric vs. Qualitative Design Changes

The discussion thus far has focused on parametric design changes, in which the
parameter values of a blueprint network are adjusted, but the network (i.e., the set
of components and their key topological relations) remains unchanged. Qualitative
changes in design, on the other hand, make changes in the network of interacting
parameters. For example, a new component may be added, an existing component
removed, or the geometric relations of components significantly changed. Typical

1 Managing Design Change with Functional Blueprints 11

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

10

12

Iteration

To
ta

l a
bs

ol
ut

e
st

re
ss

(a) miniDroid

0 1000 2000 3000 4000 5000 6000
0

2

4

6

8

10

12

Iteration

To
ta

l a
bs

ol
ut

e
st

re
ss

(b) Tetrahedral Mars lander

Fig. 1.6 Example traces of stress over time for constraint resolution including functional blueprints
for qualitative change. Topological changes are marked with a red star; note that stress resolution
reaches a stable “stalled” point before each change. (a) shows a miniDroid adapting as the step size
is raised from 10cm to 25cm, including shifting from one to two flipper drive motors to maintain
self-righting with increasing mass. (b) shows a tetrahedral Mars lander (see Section 1.3.3) adding
motors until ultimately there are nine motors per panel as instrument package mass and power
demand both increase 10-fold.

reasons for a human designer to make such a change include adding a new type of
of function, limitations in available components, and indirect geometric interactions
of components.

Work thus far with functional blueprints has primarily focused on qualitative
change in response to component limitations. Several approaches to indirect geo-
metric interactions will be discussed in Section 1.4, while decisions about functional
goals may be properly left to humans. Topological change in response to component
limitations is based around the addition of a “component” functional blueprint that
associates together the set of parameters describing a quantized component with the
set of relations bounding the component. Such functional blueprints are triggered
only when the system reaches a stress minima, at which point the most stressed
component in the network adjusts the number of instances of the component, split-
ting or merging component instances as indicated by the blueprint’s prescription for
the current stress. When a single component splits into multiple components, the
functional blueprint network changes, adding “set” parameters for those properties
that scale with number (e.g., the mass and torque of motors, but not their maximum
rotational speed) and rewiring other relations to connect to the set or original param-
eters depending on the class. A complementary change occurs when a component
set merges into a single component.

Both quantitative and qualitative variation have been tested by specifying large
changes to the values of functional parameters of the miniDroid (e.g., the step height
to be climbed, the amount of undercarriage clearance), and demonstrating that the
network of functional blueprints successfully adapts, returning to a zero-stress state.
Figure 6(a) shows an example of a stress trace from a typical such adaptation exper-
iment, in which changing the step height from 10cm to 25cm causes parameter val-

12 Jacob Beal, et al.

UNIT-IDENTITY

FLIPPER_MOTOR_Y
Value = 0.03683

FLIPPER_MOTOR_X
Value = 0.03988

FLIPPER_MOTOR_XY

MODULAR-RELATION

FLIPPER_MOTOR_MAX_SPEED
Value = 8.055366073904434d0

BOT_BODY_MASS

BOT_BODY_LENGTH
Value = 0.2

FLIPPER_MOTOR_TORQUE
Value = 1.2160246

COMPOSITE-SUM-BOUND

SOLAR_CELL_POWER

INSTRUMENT_PACKAGE_POWER
Value = 0.5

COMPOSITE-SUM-BOUND

BOT_BODY_FACE

SOLAR_CELL_AREA
Value = 0.015

COMPOSITE-SUM-BOUND

BOT_BODY_VOLUME

INSTRUMENT_PACKAGE_VOLUME
Value = 5.0e-4

UNIT-IDENTITY

FLIPPER_MOTOR_Z
Value = 0.01981

FLIPPER_MOTOR_YZ

IDENTITY-RELATION

STRUCTURE_THICKNESS
Value = 0.005

IDENTITY-RELATION

IDENTITY-RELATION

FLIPPER_MOTOR_POWER
Value = 1.5

IDENTITY-RELATION

FLIPPER_MOTOR_MASS
Value = 0.0618

IDENTITY-RELATION

FLIPPER_MOTOR_XYZ

IDENTITY-RELATION

UNIT-IDENTITY

FLIPPER_MOTOR_XZ

IDENTITY-RELATION

INSTRUMENT_PACKAGE_MASS
Value = 0.5

SUMMATION

STRUCTURE_MASS

IDENTITY-RELATION

STRUCTURE_SURFACE

IDENTITY-RELATION

UNIT-IDENTITY

IDENTITY-RELATION

IDENTITY-RELATION

IDENTITY-RELATION

IDENTITY-RELATION

(a) Tetrahedral Lander Blueprints

(b) Reuse of Self-Righting

Fig. 1.7 Demonstration of functional blueprint reusability with a simplified design for a tetrahedral
Mars lander based off of the landers for NASA’s Spirit and Opportunity rovers: (a) shows a graph
indicating structure of functional blueprint relations between parameters, constraints, and initial
values for the lander: blue is parameters with an explicit initial value, purple is parameters whose
value is inferred, green indicates constraint relations, and lines link constraints to the parameters
they affect. (b) shows a screenshot from a simulation carried out for the self-righting functional
blueprint, one of a number reused from the miniDroid.

ues to change throughout much of the design, as well as causing a change from one
to two flipper drive motors in order to maintain self-righting with increasing mass.
Notice the local minimum just before the number of flipper drive motors increases,
and the rapidly dispersed pulse of stress afterwards, as the new values propagate
through the network.

1.3.3 Reusability of Functional Blueprints

It is important to ensure that functional blueprints can often be reused from one
design to another design, because it allows the effort required to create a func-

1 Managing Design Change with Functional Blueprints 13

tional blueprint to be amortized across the benefit of its use in many systems—a
reuse expected to be further facilitated by the adaptivity inherent to the functional
blueprint concept. This has been tested by constructing a design that reuses the self-
righting functionality of the miniDroid, but is generally extremely different in form:
a simplified tetrahedral Mars Lander based off of the landers for NASA’s Spirit and
Opportunity rovers.

These landers used a tetrahedral shape to ensure that the rover they delivered
would be upright: three of the four panels open away from the fourth, like petals
of a flower, so that if the rover lands on any face other than the intended bottom, it
will be flipped upright by the opening of the panels. This functionality is similar to
the miniDroid using its flippers to right itself, so the functional blueprints associated
with this functionality should be reusable in the new design.

Figure 7(a) shows the functional blueprint network for a simplified tetrahedral
lander containing an instrument package attached to its base and solar cells on the
interiors of the “side” panels, which are exposed when the tetrahedron opens. The
design contains a total of 11 modules (4 panels, 3 solar panels, 3 flipper motors,
and 1 instrument package). The symmetries of the design allow these component
to be described with only 23 design parameters (abstracting away details of the
instrument package contents), which are connected together by 22 constraints. Of
these constraints, 18 are reused, including the flipping functional blueprint and the
motor library. In many cases, reuse entailed minor modification of parameters (e.g.,
changing to Mars gravity, linking the flipping blueprint with the alternate simulation
shown in Figure 7(b)), but the main work required for each functional blueprint
design was reused. As a result, creation of the tetrahedral lander’s initial design and
blueprint constraint network took only 2 hours.

This design, like the miniDroid, enables large-scale design variation to be driven
by changing critical parameters and allowing the rest of the parameters to adjust
accordingly. For example, Figure 6(b) shows the result of increasing the mass and
power demand of the instrument package 10-fold. The lander grows in size, in-
creases its solar panels to deal with the expected higher demands from a larger
package, and undergoes qualitative change in the number of motors per panel, even-
tually finding that nine motors per panel are required to ensure that the lander can
right itself. These appear are fairly regular intervals as the system gracefully moves
towards resolution, stalling just before the introduction of each motor.

1.4 Expanding the Plasticity of Design

The adaptations considered thus far have been limited to relatively simple geomet-
ric forms and relations. The mixed geometric-topological representation used by
MADV, however, is capable of supporting a much broader variety of complex ge-
ometric forms [2, 4]. This potential for flexibility is both an advantage, in that it
can in principle support plastic deformation of designs, and a challenge, in that the
number of such possible deformations is extremely large.

14 Jacob Beal, et al.

(a) Rule-based Development (b) Neuromorphic Wiring

(c) Deformable Cellular Model

iRobot Corporation © 2011 subcontract to Raytheon BBN Technologies, subcontract No. BBN REF ID 13972
Distribution Statement A. Distribution of this document is unlimited.

where x is the position of the current cell, and xi its neighbor. The growth rate for a particular
cell, , is then:

Each cell ages at this rate and then splits to create a
child when its age reaches a fixed threshold. The child
is placed at a random location centered around the
parent in the range: [-λx , λx], [−λy , λy], and the
parent’s location adjusted so that the their centroid is
the parent’s original location.
Directed growth is not enough to maintain tissue
shape, so intercellular interactions are also directed
according to λ. The force fij between two cells is
modeled as:

where ri and rj are the two radii. We modeled three
forces: 1) a strong repellent force when two cells are
overlapping, 2) a weak attractive force between cells
of the same class within some small distance, and 3) a
weak repellent force between cells of different classes within some small distance. We found
these forces to be necessary to keep groups of the same cell type together, and prevent too much
mixing between tissue types. These forces were then summed over neighbors and directed with λ
as follows:

This ensures motion due to inter-cellular forces obeys λ. Finally, we also ensured that cells that
do not become too dense by killing off cells with high forces exerted on them. This also aids in
deformation and penetration when tissue classes collide. The resolution and efficiency of our
method, however, can still be improved significantly.
In addition to axel/chassis penetration, we simulated flipper growth (lengthwise) which is shown
in Figure 7.

Figure 7: A miniDroid flipper growth
simulation. Here, the tip of the the flipper
(green) is growing.
(d) Adherent Cell Model

Fig. 1.8 (a) Rule-based development of a miniDroid topology from an initial undifferentiated
“egg.” (b) Neuromorphic routing connecting electronic components in the interior of a miniDroid
design with wires carrying power (red), ground (green), and signal (other colors). (c) Distortion
tolerant developmental program using the Proto manifold model to automatically adapt to execu-
tion on a modified underlying shape, e.g., shifting from a thin rectangle (left) to an square with
a twisted coordinate system (right). (d) miniDroid flipper (green) growing from the tip (red) in
adherent cell simulation using MASON.

Once again, the biological roots of functional blueprints provide inspiration for
how to tackle this problem, though the answers are less well developed than for
the more constrained forms of design change discussed in the previous section. In
animals, the process of morphogenesis—development of the organism’s basic form
from an initial egg—effectively specifies a hierarchy of relationships and coordi-
nate systems that “canalize” which changes of form are simple and which are com-
plicated [30, 26]. As development continues, function-based feedback drives many
forms of system integration [27], such as the ramification of blood vessels (driven
ultimate by oxygen demand from tissue and by tension in the walls of blood ves-
sels) and the assortation of neurons to control muscles (driven by competition for
effective control).

Both canalization and feedback are known to greatly facilitate the resilience and
evolution of biological organisms [26, 27], so such developmental processes may
also provide a useful model for facilitating greater plasticity in electromechanical
designs. Such developmental models are in effect applying functional blueprints on
a second and finer level, not just in transitioning from design to design, but also as a
feedback process in the translation of a design specification to a geometric form that
can then be evaluated by the “higher-level” functional blueprints already considered.

1 Managing Design Change with Functional Blueprints 15

[2] and [5] present a variety of approaches for integrating such developmental
models with the MADV architecture. At the coarsest scale [5] presents a “tissue
development” model in which the topological and parameter relations of a design
are generated by applying a set of developmental rules. Each developmental rule
is an independent and asynchronous operation that applies a sequence of operators
(the rule’s body) on any tissue that matches the rule’s preconditions. Executing a set
of rules on an initially undifferentiated electromechanical body (“egg”), resulting
in a body plan of a design “fetus” made up of various “organs” like limbs, flippers
and wheels—the topological component of the mixed topological/geometric rep-
resentation. Parameters in the rules become the geometric parameters constraining
the topological elements generated by applying the rules, with design symmetries
emerging from the repeated application of a single rule. Figure 8(a) shows an ex-
ample of the basic miniDroid body-plan generated by a set of 12 rules operating in
eight conceptual stages. Detailed description of the rules and stages may be found
in [5].

The layout of wires, cables, and other such connections is another area of de-
sign where plasticity of form is useful, as these often have a great deal of flexibility
in how they can be routed from place to place within a design. Making analogy
to the chemotactic process by which neurons grow axons to their appropriate tar-
gets in biological development, routing of wires and other linear connectors can be
accomplished by “seeding” each connector at one end-point and simulating an in-
formational gradient from the other [2]. The connectors are then routed by climbing
up the gradient, avoiding one another and fixed elements of the design as they grow.
Figure 8(b) shows an example of this wiring model, from [2], being applied to lay
out power, ground, and signal wires connecting the batteries, CPU, encoder, and
motors of a miniDroid.

At a finer grain, Figure 8(c) and 8(d) show cellular models of development [2].
These cellular models have the advantage that the distribution of “cells” can directly
represent arbitrarily complex shapes, but the disadvantage that it is necessary to in-
terpret these shapes in order to re-connect them with the parametric relationships
that higher-level functional blueprints act upon. Another challenge is the tension
between the resolution of the cells and the cost of simulation. Figure 8(c) shows
how a fine-grained cellular model, implemented using the manifold geometry oper-
ations of the Proto [31, 32] aggregate programming language, allows a developmen-
tal plan to distort to match the conditions of its execution. In this case, the layout of
electronics, wheels, and motors in a miniDroid “body plan,” executing on a model
of 2000 cells distributed through a rectilinear 3D volume of space, is changed in
proportion (left) and twisted by a change in coordinate system (right), showing the
inherent geometric adaptation of the program. Further coherence in adaptation can
be enabled by soft-body simulation, which can allow design elements to adhere,
compress, deform, penetrate, or otherwise physically interact with one another for
co-adaptation during the developmental process. Figure 8(d) shows an example of a
computationally inexpensive soft-body model implemented using MASON, a Java-
based multi-agent simulator [33], implementing tapering of a miniDroid flipper by
means of an adhesion-based growth process.

16 Jacob Beal, et al.

1.5 Applications and Open Problems

This chapter has presented the concept of functional blueprints, showing that they
are a viable and potentially scalable approach to adaptation of complex electrome-
chanical designs. Applied in combination with unified topological-geometrical rep-
resentation and self-tuning step sizes, functional blueprints can adapt complex de-
signs effectively across a large range of variation, producing both quantitative and
qualitative changes that maintain functionality in a changing electromechanical de-
sign. Functional blueprints are also composable and reusable, as demonstrated by
the transfer of blueprints from the miniDroid design to the tetrahedral lander design,
and the approach may be further extended to allow greater adaptability through the
plastic deformation of components.

The visionary goals for this approach are two-fold. The first is to allow non-
experts to produce design variations that satisfy new requirements, even without a
good understanding of subsystems, simply by indicating the critical changes that
are needed and allowing the rest of the complementary changes to propagate au-
tomatically. The second is to enable a continuous design and manufacturing cy-
cle, in which emerging additive manufacturing technology joins with a functional-
blueprint-driven radically decreased cost of redesign to enable even highly complex
electromechanical systems like aerospace vehicles to be updated on the fly, rapidly
incorporating new technologies and responding to changing requirements. Realizing
these visions will require an investment to develop libraries that associate existing
CAD components with corresponding functional blueprints, as well as development
of appropriate user interfaces, and additional work to enhance the speed and re-
liability with which large networks of functional blueprints can be guaranteed to
converge.

Because functional blueprints encode knowledge about a design, they can also
be used to assist human designers in other ways than adaptation. In particular, func-
tional blueprints can not only detect potential design problems but can be used to
generate human-readable explanations of the causes of those problems and sugges-
tions for approaches to fixing them. This holds the potential for improvements in
the way that systems engineering is conducted and taught.

In the practice of systems engineering, functional blueprints can be used to im-
port the software notion of continuous integration into electromechanical design.
Continuous integration is an important tool for rapid and reliable software engineer-
ing, in which every incremental step in the realization of a design is automatically
tested against a suite of “regression tests” ensuring that important existing func-
tionality is not endangered by progress in other areas. By evaluating the ability of a
design to satisfy requirements, functional blueprints could be used to effectively im-
plement such regression testing, decreasing the cost of integration and the number
of design problems identified after production.

Finally, functional blueprints could also be used in several ways to help edu-
cate students on electromechanical design and/or manufacturing. First, functional
blueprints could be used as part of an active learning process to give a student in-
stantaneous feedback on the strengths and weaknesses of their current design. Sec-

1 Managing Design Change with Functional Blueprints 17

ond, since functional blueprints can be used to adapt a design to find an integrated
solution, this sort of “look-ahead” could be used either to give students hints to help
with design or to evaluate what aspects of design a student is most struggling with,
and therefore to adaptively present or recall relevant curriculum elements.

In sum: the engineering of complex electromechanical systems is an important
problem that impacts society in myriad ways. Functional blueprints offer the po-
tential to improve the engineering process at every phase: assistance in design, im-
proved diagnosis of potential faults, simplification of through-life adaptation and
redesign, democratization of engineering, and even improvement of the education
of future electromechanical engineers.

References

1. Beal J. Functional Blueprints: An Approach to Modularity in Grown Systems. Swarm Intel-
ligence. 2011;5(3).

2. Beal J, Mostafa H, Axelrod B, Mozeika A, Adler A, Markiewicz G, et al. A Manifold Operator
Representation for Adaptive Design. In: GECCO 2012; 2012. p. 529–536.

3. Adler A, Yaman F, Beal J, Cleveland J, Mostafa H, Mozeika A. A Morphogenetically Assisted
Design Variation Tool. In: AAAI; 2013. p. 9–15.

4. Beal J, Adler A, Mostafa H. Mixed Geometric-Topological Representation for Electrome-
chanical Design. In: Extended Abstract at GECCO 2013; 2013. p. 105–106.

5. Beal J, Lowell J, Mozeika A, Usbeck K. Using Morphogenetic Models to Develop Spatial
Structures. In: Spatial Computing Workshop 2011 at IEEE SASO ’11; 2011. p. 85–90.

6. Campbell MI, Cagan J, Kotovsky K. A-Design: An Agent-Based Approach to Conceptual
Design in a Dynamic Environment. Research in Engineering Design. 1999;11:172–192.

7. Hoover SP, Rinderle JR. A synthesis strategy for mechanical devices. Research in Engineering
Design. 1989;1:87–103.

8. Fromherz MPJ, Bobrow DG, de Kleer J. Model-Based Computing for Design and Control of
Reconfigurable Systems. AI Magazine. 2003;24(4).

9. Fan Z, Wang J, Goodman E. Exploring Open-Ended Design Space of Mechatronic Systems.
In: Cutting Edge Robotics. Germany: Pro Literatur Verlag; 2005. p. 707–726.

10. Koza JR, Bennett III FH, Andre D, Keane MA. Evolutionary design of analog electrical
circuits using genetic programming. In: Adaptive Computing in Design and Manufacture.
Springer; 1998. p. 177–192.

11. ANSYS, Inc . ANSYS DesignXplorer; 2013. http://www.ansys.com/Products/
Workflow+Technology/ANSYS+Workbench+Platform/
ANSYS+DesignXplorer.

12. Newton MAH, Pham DN, Sattar A, Maher MJ. Kangaroo: An Efficient Constraint-Based
Local Search System Using Lazy Propagation. In: Principles and Practice of Constraint Pro-
gramming, 17th International Conference, CP; 2011. p. 645–659.

13. Van Hentenryck P, Michel L. Constraint-Based Local Search. MIT Press; 2005.
14. Aubin JP. Viability theory. Birkhauser; 1991.
15. Werfel J. Anthills built to order: Automating construction with artificial swarms. MIT; 2006.
16. Werfel J, Nagpal R. Collective construction of environmentally-adaptive structures. In: Int’l

Conf. on Intelligent Robots and Sys.; 2007. p. 2345–2352.
17. Estevez N. Functional Blueprints: A dynamical systems approach to structure representation.

Cornell University; 2007.
18. Stoy K, Nagpal R. Self-reconfiguration using Directed Growth. In: Intl. Symposium on

Distributed Autonomous Robotic Sys. (DARS); 2004. p. 3–12.

18 Jacob Beal, et al.

19. O’Grady R, Christensen AL, Dorigo M. SWARMORPH: Multi-Robot Morphogenesis using
Directional Self-Assembly. IEEE Transactions on Robotics. 2009;25(3):738–743.

20. O’Grady R, Christensen AL, Pinciroli C, Dorigo M. Robots Autonomously Self-Assemble
into Dedicated Morphologies to Solve Different Tasks. In: AAMAS; 2010. p. 1517–1518.

21. Doursat R. Morphogenetic Engineering Weds Bio Self-Organization to Human-Designed
Systems. PerAda Magazine. 2011;.

22. Jin Y, Meng Y. Morphogenetic Robotics: An Emerging New Field in Developmental Robotics.
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews.
2011;41(2):145–160.

23. Doursat R. Organically grown architectures: Creating decentralized, autonomous systems
by embryomorphic engineering. In: Wurtz RP, editor. Organic Computing. Springer-Verlag;
2008. p. 167–200.

24. Meng Y, Zhang Y, Jin Y. A Morphogenetic Approach to Self-Reconfigurable Modular Robots
using a Hybrid Hierarchical Gene Regulatory Network. In: International Conference on the
Synthesis and Siumulation of Living Systems; 2010. p. 765–772.

25. MacLennan BJ. Models and Mechanisms for Artificial Morphogenesis. In: Natural Comput-
ing, Proceedings in Information and Communications Technology. vol. 2; 2010. p. 23–33.

26. Carroll SB. Endless Forms Most Beautiful. W. W. Norton & Company; 2005.
27. Kirschner MW, Norton JC. The Plausibility of Life: Resolving Darwin’s Dilemma. Yale

University Press; 2005.
28. Carmeliet P. Angiogenesis in health and disease. Nature Medicine. 2003 June;9(6):653–660.
29. Quigley M, Gerkey B, Conley K, Faust J, Foote T, Leibs J, et al. ROS: an open-source Robot

Operating System. In: Proceedings of the Open-Source Software workshop at the International
Conference on Robotics and Automation (ICRA); 2009. p. 1–5.

30. Waddington CH. Canalization of Development and the Inheritance of Acquired Characters.
Nature. 1942 November;150(3811):563–565.

31. Beal J, Bachrach J. Infrastructure for Engineered Emergence in Sensor/Actuator Networks.
IEEE Intelligent Systems. 2006 March/April;p. 10–19.

32. MIT Proto; Retrieved September 16, 2012. software available at http://mitproto.net.
33. Luke S, Cioffi-Revilla C, Panait L, Sullivan K, Balan G. MASON: A Multi-Agent Simulation

Environment. Simulation. 2005;82(7):517–527.

