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Abstract

Many self-organizing and self-adaptive systems use the
biologically inspired “gradient” primitive, in which each
device in a network estimates its distance to the closest
device designated as a source of the gradient. Distance
through the network is often used as a proxy for geomet-
ric distance, but the accuracy of this approximation has
not previously been quantified well enough to allow pre-
dictions of the behavior of gradient-based algorithms. We
address this need with an empirical characterization of the
discretization error of gradient on random unit disc graphs.
This characterization has uncovered two troublesome phe-
nomena: an unsurprising dependence of error on source
shape and an unexpected transient that becomes a major
source of error at high device densities. Despite these ob-
stacles, we are able to produce a quantitative model of dis-
cretization error for planar sources at moderate densities,
which we validate by using it to predict error of gradient-
based algorithms for finding bisectors and communication
channels. Refinement and extension of the gradient dis-
cretization error model thus offers the prospect of greatly
improving the engineerability of self-organizing systems on
spatial networks.

1 Introduction

A common building block for self-organizing and self-
adaptive systems is a gradient—a biologically inspired
primitive in which each device in a network estimates the
distance through the network to the closest device desig-
nated as a source of the gradient. This measure of distance
through the network is often used as a proxy for geometric
distance. For example, gradients have been used in algo-
rithms that guide people (e.g. [10]) and robots (e.g. [13],
[11]) through space, establish coordinate systems (e.g. [1],
[4]), and create self-scaling geometric patterns (e.g. [12],
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Figure 1. A gradient is a distributed calcula-
tion of the shortest distance from each de-
vice to a source region (blue). For a spatially
embedded network, distance along edges
in the network approximates geometric dis-
tance in the space containing the network.

[6]).
Despite its usefulness and popularity, however, the use of

gradients to approximate geometric distance has remained
a matter of craft rather than engineering—it has not previ-
ously been possible to quantitatively predict the behavior of
new gradient-based algorithms. If we are able to build a
model of gradient that allows such predictions, it will be an
important step toward realizing the vision of self-managing
systems engineering enunciated in [2].

A key component of any model of gradient behav-
ior is the discretization error—error due to the difference
between geometric distance and distance along network
edges. The lower the density of devices, the less rela-
tionship there is between geometric distance and the es-
timates produced by a gradient. The relationship is non-
linear, though, and impacts different algorithms in different
ways. While the impact of network structure has been stud-
ied for specific gradient-based algorithms (e.g. routing[9]
and localization[1]), these models do not generalize.

We have therefore performed a series of experiments
characterizing gradient’s discretization error on unit disc

Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems

978-0-7695-3404-6/08 $25.00 © 2008 IEEE

DOI 10.1109/SASO.2008.53

203

Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems

978-0-7695-3404-6/08 $25.00 © 2008 IEEE

DOI 10.1109/SASO.2008.53

203



A B

Figure 2. A bisector between regions A and B
can be found using two gradients, one with A
as its source (blue), the other with B (green).
Any point where the distances are equal is
part of the bisector (red line), but since there
may be no devices precisely on the divid-
ing line, a bisecting region is selected in-
stead (red dashes), containing all the devices
where the difference between the two gradi-
ents is at most one hop.

networks:

• Section 3 presents a set of characterization experi-
ments. These reveal two troublesome phenomena: a
significant dependence of error on source shape and
a previously unnoticed transient that becomes a major
source of error at high device densities.

• Section 4 explores the causes and structure of the
newly discovered transient, suggesting possibilities for
how it may be compensated for or eliminated.

• Section 5 extracts a discretization error model for mod-
erate densities. This model can be used to make quanti-
tative predictions about the behavior of gradient-based
algorithms, which we demonstrate on algorithms for
finding bisectors and communications channels.

Together, these represent a significant advance in our ability
to predict the behavior of self-adaptive and self-organizing
algorithms that make use of the gradient primitive, and point
out possibilities for further advances.

2 The Gradient Primitive

We begin with a review of the gradient primitive. Gra-
dient1 is a distributed algorithm in which each device es-
timates its distance from the nearest device designated as
a source of the gradient (Figure 1). Gradients are gener-
ally calculated through iterative application of a triangle in-
equality constraint: devices in the source set their distance

1The sometimes-confusing name comes from its biological
inspiration—the chemical gradients that organize structure in a de-
veloping embryo—and not the mathematical operator.
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Figure 3. A redundant communication chan-
nel w units wide between points A and B can
be found using three gradients. Two measure
distance, as for bisector, and A broadcasts
its value in B’s gradient. Devices where the
two distances sum to this value are on the
shortest path from A to B (red line), which
emits its own gradient (red dots). The chan-
nel is then the set of devices within w/2 units
(pink).

estimate to zero and others minimize over the set of dis-
tances through neighbors. The simplest implementations of
gradient just start every device at infinity and relax. More
sophisticated versions adjust to changes in the network or
source[3, 5] or smooth the final estimates to reduce the im-
pact of measurement noise[1].

For a spatially embedded network, distance along edges
in the network approximates geometric distance in the
space containing the network. Algorithm designers have
frequently taken advantage of this, using gradient in ge-
ometric or topological constructions. The two gradient-
based algorithms—“bisector” and “channel”—that we use
for testing error predictions are typical, if relatively simple,
examples.

A bisector between two regions, A and B, can be found
using two gradients, one with A as its source, the other with
B (Figure 2). Any point where the distances are equal is part
of the bisector. There may be no devices precisely on the
bisector, though, so instead a bisecting region is selected,
consisting of all devices difference between the two gradi-
ents is at most one hop. Note that this region widens as it
moves away from the direct path between A and B. One ex-
ample of its use is in Origami Shape Language[12], which
uses bisectors to implement certain types of fold.

A redundant communications channel w units wide be-
tween points A and B can be found using three gradients
(Figure 3) in a variant of the algorithm from [4]. Two mea-
sure distance, as for bisector. Next, A broadcasts to every
device the distance estimate it calculated for B’s gradient.
Devices where the two distances sum to this value are on
the shortest path from A to B. The shortest path then emits
its own gradient, and the channel is then the set of devices
within w/2 units of the shortest path.
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These and many other gradient-based algorithms have
been found to work well and produce qualitatively pre-
dictable results. The vital question, however, is whether we
can predict the behavior quantitatively as well.

3 Characterization Experiments

This section presents our characterization experiments,
executed in simulation on random unit disc graphs. These
establish a baseline of behavior for gradient with a planar
source, then vary conditions from that base to establish the
impact of communication range and source shape.

Two troublesome phenomena are revealed by these ex-
periments. First, source shape has a significant effect on
error—disappointing but unsurprising. More serious, how-
ever, is the discovery that a previously unnoticed transient
becomes a major source of error at high device densities.

3.1 Assumptions

We use the following network model:

• The network consists of n devices, distributed uni-
formly randomly in a region of A units area.

• Devices are connected using the unit disc model: each
device is connected to all others within a communica-
tion radius of r units distance. We will call the ex-
pected number of neighbors per device the device den-
sity ρ.

• Each device knows the range to each of its neighbors.

• Each device executes its program in rounds. Execu-
tion is not synchronized, but the time between rounds
on any particular device is in the range [τ − ε, τ + ε].
Devices broadcast to their neighbors halfway between
executions.

Because we wish to study discretization error, we will
eliminate other error sources for purposes of this charac-
terization. We assume that devices are never added or re-
moved, that messages are never lost, that there is no error in
the range measurement, and that ε = 0 (though devices still
execute at arbitrary phase to one another). Note that the four
bulk network parameters actually have only three degrees of
freedom, since ρ = nπr2

A (neglecting edge effects).

3.2 Gradient from a Planar Source

We select a planar source as our base condition for char-
acterization, both for simplicity of analysis and because far
enough from any source, curves of equal value should be
nearly planar.
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Figure 4. A planar source in a rectangular re-
gion. Only the middle portion of the non-
source region is used for building the model,
to minimize any possible edge effects.

Initial Survey We begin with a survey that was intended
to verify general predictions about how gradient error is ex-
pected to behave, but actually discovered a previously unre-
ported phenomenon. In a rectangular region 100 units high
and 150 units wide (A = 15000), the left-most 25 units of
the region are designated as the source (Figure 4). We then
run experiments with parameters r = 5, 10, and 15, and
n = 10x, with x ranging from 2.0 to 4.0 in steps of 0.1. For
each combination of parameters, we run gradient on 100
randomly generated networks for 100 rounds of computa-
tion (long enough for the estimates at all devices to settle),
then record the position and gradient value of each device.

It was predicted, based on experience working with gra-
dients and previous studies of distance measurement in unit
disc graphs[9, 8], that discretization error would depend pri-
marily on the density ρ. Furthermore, it was predicted that
there would be three distinct domains of behavior.

• Below the percolation threshold (approximately ρ =
4.5 for two-dimensional unit disc networks[7]) the net-
work is disconnected, most devices will stay at infin-
ity, and a few will receive values with large and highly
variable error.

• Well above the percolation threshold, error should
climb linearly with distance to the source, as each
step adds a random sideways element to the forward
progress. This behavior is expected to take hold by the
time ρ is around 10.

• In the transitional range between, the network is con-
nected but not approximating space very well, and er-
ror is expected to have a linearly climbing core with
many wild high-error excursions.

Finally, although the transition from disconnected to con-
nected is a phase change, the transition from a poor spatial
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(a) Disconnected (ρ = 2.6) (b) Backswept (ρ = 6.6)

(c) Linear (ρ = 13.2) (d) Long Transient (ρ = 52.6)

Figure 5. Gradient exhibits four domains of behavior associated with various device densities. Below
the percolation threshold (ρ ≤ 4.5), the network is disconnected (a) and there is little relationship
between distance and gradient value. At slightly higher densities, there is a “backswept” domain
(b) where error grows linearly for some devices but spikes in regions which “double back” due to
large voids in the network. By around ρ = 10, there are no large voids and error grows linearly with
distance except for occasional local “speckles” of higher error caused by small voids (c). At very
high density, an initial transient emerges as a major component of error (d).
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Figure 6. Although the relationship of error
to distance changes as ρ rises, the amount
of error always decreases. Each line above
shows a mean error vs. distance for expo-
nentially increasing values of ρ, from 6.6 at
the top to 209.4 at the bottom. Notice that
lines never cross.

approximation to a good one was expected to be a smooth
progression as ρ rises.

Plotting error (estimated distance - geometric distance)
against geometric distance from source shows that these
three domains of behavior appeared and transitioned as pre-
dicted. Figure 5(a) shows all of the devices with finite non-
zero distance estimates in 100 runs of r = 10, ρ = 2.6,
scattering out from the source with effectively no relation-
ship between distance and error. In the transitional range,
error grows linearly with distance, but large voids lead to
“backswept” formations in the error plot where there are
large diversions from the underlying geometry, as in Fig-
ure 5(b), which shows 100 runs of r = 10, ρ = 6.6. By
around ρ = 10 the network has become a good approxi-
mation of the space and there is only a small speckling of
higher error points caused by voids with local impact, as in
Figure 5(c), which shows 100 runs of r = 10, ρ = 13.2.

As the density continues to increase, however, an unex-
pected factor begins to dominate the behavior of the gra-
dient. Near the source there is an initial transient region
in which error behaves differently, starting high and declin-
ing, as in Figure 5(d), which shows 100 runs of r = 10,
ρ = 52.6. This transient dies out slowly, and becomes
the dominant contributor to error over a greater distance at
higher densities.

Once the network is approximating space well, however,
the mean error is always decreasing as density increases.
Figure 6 shows mean error when devices are clustered into

bands 1 unit of geometric distance wide. What appears to
be happening is that the error has two components, one re-
sponsible for the linear rise with distance and another re-
sponsible for the transient. Both decrease as ρ increases, but
the transient component decreases more slowly. Thus, even
though at moderate densities the transient component is so
small that it has not previously been noticed, at high den-
sities it comes to dominate the linear component for many
hops.

Should we concern ourselves with this transient? Even
though it only dominates at densities which are not fre-
quently achieved in current application areas where gradi-
ents are used, there is no reason to expect that this must
remain the case. Moreover, once one knows to look for it,
its effect, though relatively small, is noticeable even at mod-
erate densities (e.g. ρ = 20).

Detailed Survey The discovery of the transient means
that the initial survey has too few data points to fit a model.
This is remedied with a second, more detailed survey, fixing
r = 10, and letting n range from 102.70 to 104.00 (ρ = 10.5
to ρ = 209.4), varying the exponent in steps of 0.01 and
rounding to the nearest integer. As before, we run 100 net-
works for each value of n, recording values after 100 rounds
of computation.

To build an error model from this data, we first cluster
devices by their geometric distance d from the source. Tak-
ing all 100 runs for a given n, all devices with d ∈ (0, 1] go
in a cluster with center d = 0.5, all devices with d ∈ (1, 2]
go in a cluster with center d = 1.5, and so on. For each
cluster, mean and standard deviation of error are computed,
yielding a total of 125 data points for each of 131 values of
ρ from which to build the model.

Our error model assumes a normal distribution of error,
characterized by a mean and standard deviation and param-
eterized by distance d and density ρ. For the mean, the tran-
sient appears to be a power law relation, so we fit each the
points for each ρ to the equation

ε̄G = αd + βd−γ

where ε̄G is the mean error, d is the distance, and α, β,
and γ are fit constants. The first term models the linear
components, the second the transient. We than plot the fit
constants against ρ and discover that each also appears to be
a power law relation. The empirical equation for the mean
error is thus:

ε̄G = α1ρ
α2d + β1ρ

β2d(γ1+γ2ργ3 )

where the coefficients are:
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Name Value 95% confidence bounds
α1 7.8 (6.8, 8.7)
α2 -2.14 (-2.19, -2.10)
β1 11.2 (10.8, 11.5)
β2 -0.516 ( -0.526, -0.505)
γ1 -0.292 (-0.303, -0.282)
γ2 1.6 (1.3, 1.9)
γ3 -0.77 (-0.86, -0.69)

For the standard deviation σεG , we want to fit it to the
equation

σεG = κ + λd−μ

where κ, λ, and μ are fit constants, because the amount of
variation in the linear domain appears to be constant. Un-
fortunately, the small percentage of high error points still
to be found at moderate densities has the effect of intro-
ducing a large amount of noise into the standard deviation
measure, and it is thus necessary to fit the equation in two
stages, first getting a model for λ and μ from high-density
trials (ρ > 20.5) where the transient dominates, then using
that partial model to find κ. The final model for standard
deviation is:

σεG = κ1ρ
κ2 + λ1ρ

λ2d(μ1+μ2ρμ3 )

where the coefficients are:

Name Value 95% confidence bounds
κ1 -25000 (-52000, 2000)
κ2 -4.5 (-4.9, -4.0)
λ1 7.40 (7.07, 7.73)
λ2 -0.529 ( -0.541, -0.517)
μ1 -0.278 (-0.283, -0.272)
μ2 11 (5, 16)
μ3 -1.38 (-1.54, -1.21)

Comparing the model against the data it was derived
from shows an overall good fit: R2 > 0.99 for mean and
R2 > 0.95 for standard deviation. Figure 8 shows exam-
ples of the model compared against raw error.

Unfortunately, at moderate density (ρ up to about 20) it
is hard to evaluate the fit because there is so much noise
in the standard deviation measure. Given the large num-
ber of experiments and data points going into each cluster
(e.g. an average of 517 for ρ = 16.6), we interpret this to
mean that a normal distribution is not ultimately an appro-
priate model for the error distribution at moderate densities.
Even so, an alternate model for moderate-ρ (introduced in
Section 5) will prove good enough to predict error in the
gradient-based algorithms we consider in this paper.

3.3 Variation of Communication Radius

Thus far, we have produced an empirical model of er-
ror with respect to two parameters, distance from source d

(a)

(b)

Figure 8. Examples of comparison of gradi-
ent error model (red) against measured error
(blue). Note that the model does not capture
the asymmetry in variation of error.

and device density ρ. The total area A and number of de-
vices n cannot affect the algorithm, though behavior might
be affected by proximity to an edge. The only remaining
network parameter is r, the communication radius.

It is certain that there will be no qualitative changes in
behavior associated with changes in r, since any two values
of r can be mapped onto one another by changing units. A
change in units means a linear rescaling of distance, so we
expect to see error change proportional to r.

We investigate this with three “crosscutting” surveys,
holding ρ constant as r varies from 5 to 20 in steps of 1.
Using the same network layout, n is thus determined by r,
and data is gathered as before: 100 runs of 100 rounds each.
The first survey (ρ = 10) examines a point where the linear
component dominates, the second (ρ = 100) examines a
point where the transient dominates, and the third (ρ = 50)
examines a point with some clear mixing of behavior.
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Figure 7. Source shape has a small but significant effect on gradient error. Shown here are typical
distance/error curves for planar (black line), convex (green dashes), and concave (blue dash/dot)
sources.
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Figure 9. Convex and concave sources: cir-
cular source in a corner (a), and annular
source around outside (b).

In all cases, there is clear variation with radius of com-
munication, and the variation appears to be roughly linear,
as predicted. The number of data points is far too small, and
noisy, however, to make a serious attempt at fitting, partic-
ularly for the ρ = 10 survey, where half of the runs involve
less than 300 data points. In future work, a better survey
would be to hold n constant and vary area instead.

3.4 Variation of Source Shape

To evaluate the whether source shape has a significant ef-
fect, we survey the behavior of two alternate source shapes,
one convex and one concave. For the convex source, we

use a circular source in one corner of the area (Figure 9(a)),
and for the concave source we set the source as everything
except a circular region in the middle (Figure 9(b)). The
surveys are otherwise exactly like the first planar source sur-
vey.

The convex source generally produces more error than
the planar source, while the concave source produces less
(and dramatically less right at the center). This is pre-
sumably due to a difference in the number of potential
paths with near-optimal lengths from any given point to
the source. Worse for predictability, however, a significant
amount of the difference between convex and planar source
behavior appears to be tied up in the transient. An important
question for future investigation is whether there is a simple
relationship between the radius of curvature at the source
and the error curve.

4 Structure and Causes of the Transient

Where does this transient come from, and how can we
compensate for it? If we are to predict the behavior of
gradient-based algorithms at high device density, we must
have answers to these questions.

We can begin to gain insight on this question by inspect-
ing the structure of error along lines tangent to the surface
of the source. Although there is no coherent structure when
100 runs are viewed together, as is to be expected, looking
at single runs reveals a startlingly different picture.

Figure 10 shows the error for a single run of gradient
at ρ = 209.4, plotted against tangent coordinate value and
colored to indicate bands of distance from the source. While
the relatively high initial error does smooth out farther from
the source, it appears that those initial perturbations cast a
long “shadow” that sets the general error landscape far into
the distance.

It is not surprising that a significant error casts a long
shadow, since the error cannot be corrected until a shorter
path to the source penetrates the “shadowed region” at a

209209



−50 −40 −30 −20 −10 0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Tangent Coordinate

E
rr

or
Error Structure Tangent to Planar Source (ρ=209.4, r=10)

 

 
0<d<= 25
25<d<= 50
50<d<= 75
75<d<= 100
100<d<= 125

Figure 10. At high neighbor density, error is
strongly clustered in space, with the cluster-
ing determined by the behavior very close to
the source.

shallow angle. What is surprising is that there should be so
much more error in the very first hop than is added later.

What is different about the first hop? One thing is that
there is a non-linearity in the values held by the source: ev-
ery device in the source has a distance estimate of zero, no
matter its depth within the apparent “surface” of the source.
Another thing is that small displacements perpendicular to
the surface of the source have a larger impact on distance,
since their effect on angle is greater. The combination of
these two differences would seem to be a good candidate
for causing the distribution of error to scale differently in
the first hop (Figure 11), so that as density increases the
first-hop error becomes increasingly prominent.

If this is, in fact, the case, then it should be possible to
eliminate the the transient by removing the difference be-
tween the ideal and discrete surface of the source. One way
of doing this is to have the source be a single device rather
than a planar region; another is to have source devices give
their depth within the source rather than zero.

We survey the behavior of gradient under both of these
conditions, using surveys that are otherwise exactly like the
first planar source survey. As expected, the transient is com-
pletely eliminated: examples are shown in Figure 12.

Many gradient-based algorithms use region sources, so
using only point sources is not an acceptable solution. It
may be possible, however, to locally estimate a node’s depth
within the source by examining the distribution of its neigh-
bors which are, themselves, sources.

source

Figure 11. Gradient error behaves differ-
ently close to the source: the closest de-
vice (red) may have a high relative error be-
cause source devices all have zero gradient
value and small perpendicular displacements
have a large impact on distance close to the
source. A device several hops away (blue)
has many more possible small-angle paths to
a device near the surface of the source.

5 Predictions using a Linear-Range Dis-
cretization Error Model

Finally, we return to the problem which caused us to
build such models in the first place: predicting the error
of algorithms that make use of the gradient primitive. We
consider only the range where space is well approximated
and, since source shape appears to have a particularly signif-
icant effect on transient error, where the linear component
is dominant (approximately ρ = 10 to ρ = 20). The bound-
aries of this range are soft, however, and predictions are still
reasonable for some distance outside the range.

For these predictions in the linear range, we will use a
model that includes only the linear component. For the
mean, this just means dropping the second term of the
model from Section 3.2:

ε̄G
′ = α1ρ

α2d

The standard deviation model, however, needs to be red-
erived. Taking the means of the standard deviation curves
ρ = 10.5 to ρ = 16.25 from the detailed survey, we have 20
data points that appear to form a power law relation. Fitting
to the equation

σ′
εG

= κ′
1ρ

κ′
2

produces a good fit (R2 > 0.95) where the coefficients are:

Name Value 95% confidence bounds
κ′

1 350 (180, 510)
κ′

2 -2.0 (-2.2, -1.8)

We now apply this linear-range model of discretization
error to predicting the behavior of the two gradient-based
algorithms described in Section 2. Because our aim is to
show the predictive power of the gradient error model, we
will do only a first-order analysis of the behavior of the al-
gorithms.
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(a) Point source, ρ = 52.6 (b) Point source, ρ = 209.4 (c) Coordinate source, ρ = 52.6 (d) Coordinate source, ρ = 209.4

Figure 12. A gradient from a point source (red, (a) and (b)) or a source where the values indicate
depth within the “ideal source” (red, (c) and (d)) does not exhibit the initial error transient shown by
a normal planar source (blue) at high densities. Note that for the point source, devices within one
hop have zero error since they can measure their distance to the “surface” of the source directly.

Bisector We choose to compute the error of a bisector
from the set of devices claiming to be in the bisector region
when they should not or vice versa—i.e. those with values
different than they would be given if they knew their geo-
metric distance perfectly. The error εB will be the sum of
the square of the distances of such points from the surface
of the bisector region, divided by the number of devices that
should be within the region.

Error comes from two sources: thinning of the bisector
region due to distance overestimates and displacement of
its center due to differences in the two gradients’ distance
measures. Because the algorithm looks for two gradients to
be equal, their mean errors should cancel and displacement
error should come from the combination of the two standard
deviations. Thinning, on the other hand, is determined by
the rate at which mean error accumulates. These may add
or subtract from one another and act on both sides of the
bisector region. If we neglect the widening of the region,
this yields the approximate error equation:

ε̂B = 2(
ε̄G

′r
d + ε̄G

′ +
√

2σ′
εG

)2/r

We survey the bisector algorithm using source regions
that are circles 20 units in diameter, set 40, 60, or 80 units
apart, with r = 10 and n = 10x where x ranges from to 2.4
to 3.2 in steps of 0.1 (ρ = 5.2 to 33.3). Figure 13(a) shows
that the predicted and actual errors match well.

Channel We compute error for channel the same way as
for bisector: the sum of squares of distances of mislabelled
devices from the surface of the ideal channel region, divided
by the number of devices in the ideal region.

Error comes from the same two sources, thinning and
displacement, but displacement now comes from the side-
ways drift in the shortest path between the two endpoints
of the channel. We make a worst-case assumption that the
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Figure 13. A rough analysis using the linear-
range model of gradient error produces er-
ror predictions close to the actual mea-
sured error for both the bisector and channel
gradient-based algorithms.
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direction of drift is correlated, producing an isosceles trian-
gle whose base is the geometric shortest path length l and
whose sides are each 1/2 the expected shortest path plus ex-
pected error. The mean displacement is thus:

DC =
1
4

√
2ε̄G

′l + ε̄G
′2

and expected thinning (like for bisector) is:

TC =
ε̄G

′w
l + ε̄G

′

The displacement operates only on the “bar” of the channel,
while the thinning acts on both round ends as well, yielding
the approximate error equation:

ε̂C =
(DC + TC)2l + T 2

Cwπ

w(l + wπ)

We survey the channel algorithm using a width w of 19
or 40 and source points that are displaced 60 units from one
another vertically and either 0 or 100 units horizontally, for
a total length 60 or 116.6. The network is set up with r = 10
and n = 10x where x ranges from to 2.4 to 3.4 in steps of
0.1 (ρ = 5.2 to 52.6). Figure 13(b) shows that the predicted
and actual errors match well.

6 Contributions

We have shown that discretization error for the gradi-
ent primitive is more complex than previously believed, in-
corporating a transient component that becomes important
at high device densities. The transient component of dis-
cretization error appears to be caused by gradient’s change
in behavior at the surface of the source, and we argue that
this may allow it to be largely eliminated by locally esti-
mating the depth of devices within the source. We have
also modelled the linear component of discretization error,
with the aid of intensive empirical characterization, and this
model successfully predicts the error exhibited by gradient-
based bisector and channel algorithms.

Looking toward the future, it would be vastly preferable
to have an analytic model than an empirical one. This is
especially true since many of the most tightly-determined
constants, like the exponents on the power series, are close
to round numbers, but clearly not round numbers (e.g. α2 =
−2.14 ± 0.045). Likewise, there are many areas that need
more thorough investigation, such as the effect of source
shape.

This investigation has shown, however, that it is reason-
able to hope for a relatively simple predictive model of er-
ror for gradient within a broad range of plausible device
densities. This capability for prediction both grounds exist-
ing work on gradient-based algorithms and makes the engi-
neering of new algorithms a more routine process with sim-
pler debugging. Finally, this is an important step forward in

demonstrating the “language engineering” approach to self-
organizing and self-adaptive systems, where we gain the
ability to build complex self-organizing and self-adaptive
systems by capturing pre-existing ones as engineering com-
ponents with well understood compositional behavior.
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