Self-Managinoyg

The ability to control
emergent phenomena
depends on
decomposing

them into aspects
susceptible to
independent
engineering. For
spatial self-managing
systems, the
amorphous-medium
abstraction lets you
separate the system’s
specification from its

implementation.

Sysfrems

Infrastructure for
Engineered Emergence
on Sensor/Actuator

Networks

Jacob Beal and Jonathan Bachrach, Massachusetts Institute of Technology Computer

Science and Artificial Intelligence Laboratory

he study of self-organizing systems has now reached the tool-building phase, in

which a new discipline of self-managing systems engineering can begin to emerge.

The next step is to refine the principles of self-organization into a system of composable

parts suitable for engineering—much as components such as capacitors, transistors, and

resistors capture electromagnetism principles for
electronic engineering.

To transform a science into an engineering disci-
pline, we must

¢ decouple aspects of the problem from one another,

¢ identify an operating range,

e create standard interfaces for composition,

¢ identify primitive components that conform to the
standards, and

e create abstraction rules that hide the complexity
of systems of components.

We’ve begun this process in the domain of sen-
sor/actuator network applications, observing that in
many applications the deployed network approximates
aphysical space and that the space, rather than the net-
work, is being programmed. This observation lets us
use the amorphous medium abstraction to decouple
self-management problems. So, global behavior de-
scriptions in our Proto language can be compiled auto-
matically into locally executed code that produces
emergent phenomena matching the global description.
We’ve experimentally verified our code both in simu-
lation and (for small programs) on a network of sen-
sor/actuator nodes called Mica2 motes.

Decoupling: Amorphous medium
Consider deploying a network of devices to man-
age a large farm. The tasks that the devices will carry
out—irrigation, pest management, and fertilization,
for example—are naturally specified in terms of
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regions of the farm: “water a potato field every so-
many hours during hot weather” or “treat minor
alfalfa weevil infestations with an early harvest, but
treat major infestations with pesticides.” An appli-
cations programmer for farms should be able to write
code at this abstraction layer, rather than specifying
how the devices in the fields will coordinate to carry
out the programs.

The amorphous-medium abstraction captures the
divide between specification and implementation;
it’s a continuous computational material filling the
space of interest. Every point in the medium is a
computational device that independently executes
the same code as every other device in the medium.
(Executions diverge owing to differences in sensor
values, randomness, and each device’s interactions
with nearby devices.) Each device has a neighbor-
hood of devices less than d units of distance away to
which it exposes its internal state. Conversely, a
device can read the internal state of devices in its
neighborhood, obtaining values lagged proportion-
ally to the distance separating them.

We can’t, of course, build a continuous medium
containing uncountably many infinitely small com-
puters. We can, however, approximate it by scatter-
ing a discrete set of devices throughout the medium.
We then compute using as our basis the relatively
few systems whose discrete behavior is a good
approximation of their continuous behavior, just as
electronic engineering uses components that capture
only a few electromagnetism phenomena. In both
cases, restricting the behavior range supports engi-
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neering abstractions that ignore much of the underlying system’s
complexity.

The amorphous-medium abstraction separates the space being
programmed from the devices carrying out the program, letting us
decompose self-managing systems engineering into three layers of
abstraction—global, local, and discrete (see figure 1). Each layer is
supported by its own infrastructure component; this decouples
aspects of self-managing systems design into largely independent
subproblems:

e The discrete layer consists of devices embedded in space
exchanging messages with nearby neighbors. Infrastructure for
this level is a discrete kernel that approximately emulates an
amorphous medium.

e The local layer executes on the amorphous medium, using our
Proto language to specify a uniform behavior for each point.

* The global layer executes on the amorphous medium, using a
library of amorphous-computing algorithms translated into Proto
to control the regions’ behavior.

Table 1 illustrates some design problems that this approach separates:

e Our approach’s implementation has three infrastructure compo-
nents: a kernel providing the neighborhood abstraction, a com-
piler for the Proto language, and libraries of long-range coordi-
nation and control primitives coded in Proto.

¢ Global-layer coordination primitives operate on regions and are
implemented with local-layer interactions between points and
their neighborhoods. The neighborhood is, in turn, implemented
by messages passed between discrete devices.

e This approach describes global control as homeostatic processes
continually moving regions toward a desired behavior. It implements
these processes as networks of streams in the local layer, which com-
pile to update code executed periodically in the discrete layer.

 Different layers handle different failure modes: the neighborhood
abstraction masks individual device crashes, the homeostatic prim-
itives handle outside events that destroy regions of the network, and
a clean global-layer interface minimizes bugs in the user’s code.

e Assuming that the cost of communication dominates energy con-
sumption, the amount of communication depends on how many
long-range coordination operations occur in the global layer, how
many reductions over neighbor state are used to implement coordi-
nation at the local layer, and how many packets are transmitted and
received to implement shared neighbor state at the discrete layer.

For information on amorphous-medium research and other
related research, see the sidebar “Related Work on Engineering
Self-Managing Systems.”

=

=

S
Proto libraries

8

=
Amorphous medium

2

=4

2

2

Figure 1. Our approach decouples self-management problems
by decomposing self-managing systems into three abstraction
layers: global, local, and discrete. Interactions between
individual devices in the discrete layer emulate an amorphous
medium. The local layer describes the behavior of points in the
medium, from which we build library code to allow description
of the behavior of regions of the medium at the global layer.

P indicates a particular, arbitrary point.

Operating range: Amorphous computers

We can consider a sensor/actuator network in which devices com-
municate only with nearby neighbors to be an amorphous computer.!
Amorphous computing takes inspiration from biological systems
engaged in morphogenesis and regeneration, in which extremely
large numbers of unreliable devices (cells) coordinate to achieve pre-
dictable results with high precision.

We’ve chosen the amorphous-computer model for two reasons. First,
its biologically inspired specifications imply the self-management issues

Table 1. Decomposing self-managing systems engineering into global, local, and discrete abstraction layers separates many design
problems into largely independent subproblems.

Layer Infrastructure Coordination Control flow Failures Energy efficiency
Global Proto libraries Region Homeostasis User Coordinations
Local Proto compiler Neighborhood Stream network Region Reductions
Discrete Kernel Device Rounds Device Packets
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Our research on self-managing systems engineering draws
on previous work in many fields: our contribution lies in inte-
grating the pieces that others have developed. Previous research
on amorphous-medium languages proposed the amorphous-
medium abstraction and general strategies for controlling an
amorphous medium;'-2 this article describes a practical imple-
mentation. Other research on amorphous-computing languages
has shared the same general goals but has been directed more
toward problems of morphogenesis and pattern formation than
general computation. Examples include Daniel Coore's research
on topological patterns? and research on geometric-shape for-
mation by Radhika Nagpal;* Attila Kondacs;> and Justin Werfel,
Yaneer Bar-Yam, and Radhika Hagpal.® A notable exception is
William Butera’s work on paintable computing, which allows
general computation but lacks an abstraction barrier separat-
ing an applications programmer from low-level details of net-
work operation.’

An alternate approach to engineering self-organizing
systems is rooted in gossip communication,®'° a technique
we also use. However, gossip communication deploys less-
powerful abstractions than our approach does, because it's
solving more-general networking problems. More distant are
approaches based on alternate computational paradigms such
as chemical computation'"'2 and membrane computation.'3

Sensor network researchers have proposed several other high-
level programming abstractions to enable the programming of
large networks. For example, GHT (Geographic Hash Table)
provides a hash table abstraction for storing data in the net-
work,'* and TinyDB focuses on gathering information through
query processing.'® Both of these approaches, however, are
data-centric rather than computation-centric and don’t provide
guidance on how to do distributed manipulation of gathered
data. TinyOS'® and the Hood abstraction'” provide useful gen-
eral programming tools—indeed, our implementation of Proto
on motes uses TinyOS—but the abstractions are less powerful
and lead to bulkier, less reusable code. More similar is the Regi-
ment language, which uses a stream-processing abstraction to
distribute computation across the network.'® Regiment, how-
ever, is distributed only when the compiler finds optimization
opportunities, and significant challenges remain in adapting
its programming model to the sensor network environment.

Finally, Proto’s structure as a dynamic network of streams is
strongly influenced by Jonathan Bachrach’s previous work on
Gooze,'® as are many compilation strategies used to compact

of robustness, distribution, and scalability. Second, real-world sen-
sor/actuator networks are growing rapidly in scale and capability, bring-
ing them into closer alignment with the amorphous-computer model.

In particular, we designed Proto and its infrastructure to operate on
sensor/actuator networks with these properties:

e The number of devices n might range from dozens to billions.

* Devices are distributed arbitrarily through space and collaborate via
unreliable broadcast to neighbors no farther than r distance away.

* Devices move much more slowly than communication, if at all.

e Memory and processing aren’t limiting resources. (Profligate
expenditure of either is still bad, and memory is an important con-
straint for our mote implementation.)

Proto code for execution on motes. There's a long tradition of
stream processing in programming languages. The closest and
most recent work is Functional Reactive Programming,2° which
is based on Haskell,?! a statically typed programming language
with lazy evaluation semantics. FRP has been demonstrated on
robotics, 22 graphics,2® and user interface design.?® These systems
focus less on runtime space and time efficiency than our ap-
proach does, and the type system is firmly wedded to Haskell,
with all its strengths and weaknesses.
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will extract a large savings. Although some excess energy expendi-
ture will likely remain, we consider the gain in engineering capabil-
ity to be worth moderately inefficient energy expenditure.

Abstraction and composition: Proto

Proto’s semantics capture interface standards, primitive compo-
nents, and abstraction rules. It combines the dynamic stream networks
of Gooze? with previous work on amorphous-medium languages.>*

Primitives and composition

Proto programs produce a stream of output values. Proto uses Scheme
syntax but has its own set of types and primitive functions. For exam-
ple, the expression 2 evaluates to a stream of twos. To compose pro-
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Figure 2. A Proto program is a network of operator instances
ascending from a single root. The root's output stream serves as
a reference to the program.

grams, we use functional operators. So, the expression (+ 2 5) yields a
program that emits a stream of sevens. The compiler evaluates the oper-
ator and operand expressions using the same rules as in Scheme. The
operands are streams, and the operator constructs a stream of output val-
ues from sets of values that are input from its operands. A program is
adirected acyclic graph with a single root, with nodes that are instan-
tiated operators and edges that connect from streams to the operator
inputs that consume them (see figure 2). The root’s output stream serves
as a reference to the program ascending from it.

Types

Proto is strongly typed like ML’ (Meta-Language) and Haskell,°
and, unlike statically typed languages such as C, types are inferred
automatically from literals and function calls. So, users rarely need
to deal with types, but they’re useful for describing the various kinds
of available data and the built-in operators’ signatures.

Proto permits Boolean, character, number, and symbol data types.
We can combine these base types to form richer types using para-
meterized types, such as vectors, tuples, and functions. Vector and
tuple types can be nested to create a rich set of derived types.

Proto supports overloaded operators and chooses the most appli-
cable operator at compile time during type inference. This encourages
reuse without sacrificing runtime efficiency.

1/0
The sense operator accesses input from the outside world or other
programs running on a device. For example,

(sense :light)

returns the value of the light sensor. Similarly, a Proto program affects
the outside world through the actuate operator. So, for example,

(actuate :sound (sense :light))

sends the light value to the sound actuator. (The mechanism for bind-
ing sensors to names is implementation dependent, as are the value
when sense is applied to an unbound name and the result of multiple
streams being sent to the same actuator.)

State
To establish persistent state, Proto uses delay loops specifying an
initial value and an expression for calculating the next value from
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current values. For example, the expression

(letfed ((i 0 (1 +1)))
i)

creates one state variable, i, which starts at zero and increases by one
each round.

Communication

Unlike discrete networks, each point in an amorphous medium has
an infinite number of neighbors. So, communication by message pass-
ing is impractical. Proto instead provides communication in the form
of summaries of all the values in the neighborhood, using the reduce-
nbrs operator to fold an expression across each point’s neighborhood.

For example, assuming a Boolean light sensor, we can dilate the
lit region by one neighborhood radius with the expression

(reduce-nbrs (sense :light) or nil)

The first argument is the value to reduce, the second is the reduction
function, and the third is the reduction’s initial value. When evaluated,
reduce-nbrs begins with the initial value, then incorporates the values from
its neighbors one at a time, using the reduction function, to produce the
final result. Indeed, we can perhaps better understand reduce-nbrs as a
transform that operates on nearby space rather than as communication.

In general, we don’t want to tie our program’s behavior to neigh-
borhood sizes, so Proto provides special operators for measuring a
neighbor’s space distance, time distance, and volume: nbr-dist, nbr-lag,
and infinitesimal, respectively. (These might be implemented coarsely
or finely, depending on the hardware available. For example, our
mote implementation estimates the distance to all neighbors as its
radio range, and the time lag as one round.)

Thus, for example, we can measure the distance to a light with a
gradient flowing from the source:

(letfed ((n infinity (+ 1 (if (sense :light) 0
(reduce-nbrs (+ n nbr-dist) min infinity)))))
(=n1))

(Biological systems often use chemical diffusion from a source as
a distance measure, and various distributed-computing fields have
co-opted “gradient” by analogy to mean a distance-to-source mea-
surement created by gossip.)

The addition of the 1 drives the distance upward at those points
that aren’t connected to the source, allowing the gradient to adapt to
changing sources in the same way as Lauren Clement and Radhika
Nagpal’s active gradients.” Here, the reduce-nbrs expression starts with
a value of infinity and combines it with each neighbor’s value for n to
find the minimum. So, nis pegged to zero at light sources and floats
up by one for each distance unit. Each point converges to the esti-
mated distance to the nearest light source.

When compiling Proto expressions into executable code, the com-
piler identifies the values that reduce-nbrs expressions need so that the
discrete kernel can export them to its neighbors whenever they
change. Any reduction that can be approximated using a sampling
of neighbor state can be implemented on a real network by the dis-
crete kernel. This covers a wide range of functions, particularly with
the inclusion of the distance and infinitesimal operators to allow inte
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gration. For example,

(/ (reduce-nbrs (* (sense :light) infinitesimal) + 0)
(reduce-nbrs (* 1 infinitesimal) + 0))

finds the average light value in each point’s neighborhood (the sec-
ond reduce-nbrs expression normalizes the integral). However, we must
subtly redefine some operators such as random to have a compatible
amorphous-medium semantics and discrete-kernel implementation.

Abstraction

We can abstract Proto expressions to create new operators, just as
you can abstract ordinary Scheme expressions to create new func-
tions. For example, we can make a generic gradient operator

(def gradient (src)
(letfed ((n infinity (+ 1 (if src 0 (reduce-nbrs (+ n nbr-dist) min infinity)))))
(=nT))

and a generic averaging operator

(def local-average (x)
(/ (reduce-nbrs (* x infinitesimal) + 0)
(reduce-nbrs (* 1 infinitesimal) + 0)))

We can then use these operators in expressions, including definitions
of operators at a higher abstraction level. So, for example, we can
write the expression

(<= (gradient (sense :light)) 2)
that outputs frue anywhere within two units’ distance of a light.

Execution

Pulling a value from a program’s output stream initiates a round of
execution. (The discrete kernel generally discards these values, so a
program’s ultimate goal must be achieved through actuation.) The
discrete kernel then distributes execution up the network as operators
pull values from their inputs. If an operator doesn’t pull a value from
one of its inputs, the upstream operator doesn’t execute and hiber-
nates, discarding any internal state until it begins executing again and
reboots. For example, assuming a Boolean sound sensor, the program

(when (sense :sound)
(<= (gradient (sense :light)) 2))

runs the gradient only where there’s sound. Consequently, points within
two units’ distance but separated by a quiet area will output false, because
the gradient isn’t running in the intervening area (see figure 3).

The discrete kernel instantiates the expression associated with an
interpreted operator into an encapsulated network once for each active
instance of the operator. When an instance hibernates, the discrete ker-
nel discards this network, along with any state in its loops, and restarts
the network from scratch when it next becomes active. Among other
things, this allows recursion because the discrete kernel constructs a
potentially infinite network structure only for the levels in use.

A process module’s output might serve as input to more than one
other module. For example,
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(let ((d (gradient (sense :light))))
(if (sense :sound) (* d d) d))

always runs the gradient but squares the output when there’s sound (see
figure 4). Execution carries a time stamp identifying the round so that the
subprogram can return the same result every time a downstream process
module pulls a value during a single execution round. Conversely, as
long as at least one process module pulls a value, the subprogram will
execute.

Miscellany

Proto lets a programmer define new primitive operators. Although
primitive operators aren’t strictly necessary, they’re generally faster
and more memory efficient because Proto can perform the calcula-
tions without instantiating and walking a network of streams, as hap-
pens in an interpreted operator.

Proto code is quite compact, which is unsurprising, given its Lisp
roots. For example, Adam Eames’s algorithm for distributed dis-
covery of minimum threat paths® requires 2,000 lines of nesC® code,
while an equivalent Proto implementation is a mere 25 lines long.

Raising the abstraction level

Using Proto, we can implement composable abstractions for con-
trolling a sensor/actuator network.

Gradients, for example, are a common amorphous-computing
primitive. Clipping a gradient against a maximum distance produces
a dilation operator

(def dilate (n source)
(<= (gradient source) n))

which adapts to changing sources equivalently to Clement and Nag-
pal’s active gradients.”

We can then gradually raise the abstraction level by building on
our growing library of primitives, as in the bounding program

(def bound (source max boundary)
(when (not boundary) (dilate max source)))

which returns frue only within the boundaries containing the source.
We can use bound to reexpress the program in figure 4 as

(bound (sense :light) 2 (not (sense :sound)))

Coordinates

Another useful example is the coordinate system mechanism from
William Butera’s paintable computing.'”

We derive the coordinate system from a provided source and des-
tination. We need to measure the distance between these places, which
we do with a distance operator that uses our previously defined gradient
operator:

(def distance (p1 p2)
(letfed ((d 0 (reduce-nbrs d max (* (gradient p1) (if p2 10)))))
d)

The paintable-computing channel mechanism, which finds a wide path
connecting two points, uses a trail-following operator to trace a gradi-
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Figure 3. All communication proceeds through neighborhoods,
so a gradient (gray) spreading from regions with light (black)
that runs only when there’s sound (white boxes) can’t cross a
gap where there is no sound.

*

| sound |—>| sense

Figure 4. Subprograms might feed multiple inputs. The
subprogram caches its output so that it executes only the
first time its output stream is pulled in a given round.

sense |—>| gradient “
]

ent back to the source. This is fairly fragile, so we instead find the trail
geometrically by triangulation against distance, then widen it using dilate:

(def channel (src dst width)
(let* ((d (distance src dst))
(trail (<= (+ (gradient src) (gradient dst)) d))
(dilate width trail)))

Implementing the coordinates mechanism requires one more opera-
tor: we use choose-leader to break symmetry by selecting a single loca-
tion in the channel:

(def choose-leader (selector)
(letfed ( (v (if selector (random 1.0) infinity))
(minv v (reduce-nbrs minv min minv)))
(and (< v infinity) (= v minv) v))

We can then define the complicated coordinates mechanism (see figure
5) as an operator that, despite comprising many complex operators, is
relatively straightforward for a programmer to create and understand:

(def coordinates (src dst width)
(let* ( (field (channel src dst width))
(axis (channel src dst 1))
(d1 (gradient src))
(d2 (gradient dst))
(dp (distance src dst))
(buoy (choose-leader (and field (< d1 dp) (< d2 dp)))
(y (/ (+(*d2d2) (= (*d1 d1)) (* dp dp)) (* 2 dp)))
(x (sqrt (- (*d2d2) (*y y)))
(neg (bound buoy (+ width dp) (or (< y 0) (> y dp) axis))))
(tuple (if neg (— x) x) y)))
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Figure 5. Finding coordinates with a mechanism adapted from
paintable computing:'® The coordinate system’s two anchor
points send out gradients, producing d1, d2, and dp, which determine
the location of p except for the sign of its vertical coordinate. We
find the sign by using leader election to break symmetry. Note
that x values range vertically and y values range horizontally.

Homeostasis

To accomplish long-range coordination, we use homeostatic oper-
ators that are always relaxing toward a correct solution.

For example, we can combine a heartbeat and an estimate of lag
to define a simple time synchronization operator that converges
toward a shared time. If the heartbeat arrives from a shorter route
and advances time too quickly, the lag drops as the gradient records
the shorter distance. If communication disruptions interfere with the
heartbeat, the lag gradient floats upward, driving the time locally:

(def time-gradient (src)
(letfed ((n infinity (+ 1 (if src 0 (reduce-nbrs (+ n nbr-lag) min infinity)))))
(=n1))
(def sync-time (src)
(let ((lag (time-gradient src)))
(letfed ((time 0 (if src (1+ time) (reduce-nbrs time max 0)))
(+ time lag)))

Using this abstraction, we can establish long-range coordinated
behavior such as sinusoidal oscillations—useful for locomotion in
distributed robotics or moving objects around an active surface.

We could do this with an externally supplied phase coordinate
(established, for example, using Butera’s algorithm) and a heartbeat
for synchronization,

(def oscillate (heart phase period)
(sin (/ (+ (sync-time heart) phase) period)))

or by calculating the oscillation vector internally. We can specify a
vector in terms of a source and destination and find a wave front per-
pendicular to that by calculating their bisector,

(def bisector (a b)
(let ((dif (abs (— (gradient a) (gradient b)))))
(<= dif (reduce-nbrs nbr-dist max 0))))

which might need to be swollen to make it a boundary impermeable
to communication:

(def impermeable (sef)
(reduce-nbrs set or nil))
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To break symmetry and allow the oscillation to propagate in one
direction rather than flowing outward from the bisector, we define

(def abs->signed (val is-plus)
(if (hound is-plus (maxdist) (impermeable (= val 0)) val (— val)))

and use it to negate the phase on a plane wave’s src side:

(def plane-wave (src dst period)
(let ((phase (abs->signed (gradient (bisector src dst)) dst))
(sin (/ (+ (sync-time src) (local-average phase)) period))))

All that remains, then, is to set the wave’s period to the vector’s
length:

(def oscillate (src dst)
(plane-wave src dst (distance src dst)))

Implementation and verification
‘We conducted experimental verification using a simulator and an
implementation of Proto for Mica2 motes.

The discrete-kernel implementation

Motes present significant challenges for any language implemen-
tation, but especially for high-level languages such as Proto. Mica2
motes are 8-bit microcontrollers running at 16 MHz, have only a
scant 4 Kbytes of RAM, run on two AA batteries, and contain a rel-
atively slow radio that can send a maximum of approximately thirty
32-byte packets per second.

The biggest challenge of getting Proto to run on the motes is fit-
ting the operator trees in the 4 Kbytes of RAM on the ATmegal28
memory card. This tiny memory forces a very simple memory man-
agement scheme. Fortunately, stream processing permits data struc-
tures to be mostly preallocated when trees are opened and then reused
across rounds.

Each mote has a C machine structure that provides the Proto dis-
crete-level operating system data structures for the running scripts.
Specifically, it holds the machine ID, script, version, operator tree,
time stamp, export tuple, neighborhood table, and sensor and actua-
tor data. The neighborhood data is a limited-size table of associa-
tions between the machine ID and import tuples.

The neighborhood table is populated dynamically, and stale entries
are replaced. In addition to an ID and import values, each entry con-
tains both a time-out counter tracking the time elapsed since the last
update and an area estimate used for integration. At the end of each
evaluation round, exposed state is calculated and added to an export
buffer for later transmission.

On the motes, we use a maximum table size of eight neighbors
and a single-packet export mechanism. Each export packet can sup-
port up to six number values in our current implementation. Sup-
porting multipacket exports is straightforward, and we plan to do so
in the near future.

Each primitive operator has a class structure representing static
properties and a corresponding C structure representing its runtime
values. An operator class contains the operator protocol in the form
of function pointers for constructing, opening, and closing operator
instances and for executing operator code. Additionally, the operator
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class contains the number of exported values, operator children, local-
state data, and construction arguments and the corresponding byte-
code. Operator instances contain a pointer to the operator class, its
time stamp, output data, and operator-specific data (for example, the
reduce-nbrs operator instances hold an offset into the export/neighbor-
hood tuple), and pointers to operator children.

Proto scripts are written on a PC, translated by the Proto compiler
to bytecodes, and injected packet by packet over the air into the sen-
sor network through a base station connected by serial cable to the
PC. The implementation virally forwards received scripts to neigh-
boring motes, using a mechanism similar to those that James
McLurkin,!'! Jonathan Hui and David Culler,'? and Andrew Suther-
land'3 have described. The programmer then needs only to program
a single device, and the code will spread through the network to
upgrade the other devices. To prevent conflicts during an upgrade,
each state broadcast also contains a version number, letting devices
ignore state from different versions. The current implementation sup-
ports only single-packet scripts, but implementing multipacket scripts
would be straightforward.

Once the complete set of script packets are loaded onto a mote, a
virtual stack machine interprets the script, producing a new operator
tree. Once the kernel has constructed and installed the operator tree,
the tree executes top-down, each operator executing and producing
a value once for each round.

The Proto compiler performs type inference and method selection
while translating scripts to bytecodes. Type inferencing allows the
resolution of overloaded operators into efficient type-specific oper-
ators and eventual bytecodes. To support full type inference and the
generation of type-specific bytecodes, all script operators are inlined
and specialized.

To ease porting, we’ve implemented Proto to minimize platform-
specific code. The platform-independent code consists of the neigh-
borhood management, script dissemination and interpretation, and
primitive operators. Primitive operators are written in stylized C that
permits maximal code sharing. Currently, we have 1,505 lines of plat-
form-independent code.

The platform-specific code consists of low-level timing, low-level
network code, and sensor/actuator code, and currently amounts to
270 lines on the Mica2 motes. The timing code phases the execution
and export stages. On the mote, we’ve implemented it using a TinyOS
timer event firing every 128 milliseconds. We can easily speed this
up in the future. The low-level networking code sends and receives
script and neighborhood packets. Packets arrive as events, but the
implementation processes them in tasks to ensure synchronization
of global data. Finally, the kernel implements the sensors and actu-
ators API for each mote input and output. The compiled code, includ-
ing Proto and TinyOS, constitutes 31,252 bytes.

The simulator permits the running of much larger networks (over
10,000 nodes), larger applications, flexible visualization, and friend-
lier code development and debugging. As in the mote port, we need
to implement only a small amount of platform-specific code. The
bulk of the simulator code facilitates visualization, code develop-
ment, and debugging.

Verification example

Verification begins in the simulator. For example, figure 6 shows
the plane-wave-based oscillator running in simulation on 10,000
nodes, using hop count for distance and lag.
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Figure 6. A plane-wave oscillator running on 10,000 simulated
devices. The placement of source (yellow) and destination
(magenta) markers in the devices’ sensor field determines the
wave's period and direction.

Figure 7. A group of motes running the oscillator program,
displaying the output on their LEDs. The motes are given a
synthetic coordinate for their phase.

Once a program runs in simulation, we can transfer it to the motes;
this provides ground truth as to whether our building blocks com-
pose correctly, respecting their prescribed interface. For example,
figure 7 shows a small group of motes running an oscillator with
phase and leadership supplied. This is specified completely by the
implementation Proto code:

(def gradient (src)
(letfed ((n (infinity) (if src 0 (+ 1 (fold-hood min (infinity) n))))
n))
(def sync-time (src)
(let ((lag (gradient src))
(letfed ((t O (if src (+ 11) (fold-hood max 01))))
(+1lag))))
(def osc (src pos period)
(sin (/ (+ (sync-time src) pos) period)))
(leds (/ (+ (osc (sense 1) (elt (coord) 0) 5) 1) 2))

where fold-hood is equivalent to reduce-nbrs, leds is an actuator for the mote
LEDs, coord senses the supplied phase, and (sense 1) senses leadership. This
evaluates to a script of 98 bytecodes and an operator tree of 658 bytes.

www.computer.org/intelligent
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Figure 8. Output of a group of six motes in a line running the oscillator program, subtracting phase. The motes synchronize and
begin oscillating shortly after the leader, Mote 0, is turned on. Dropped packets and variable execution rates cause the executions
on the various motes to diverge rapidly, while the time synchronization operator continually draws them back toward synchrony.

The motes synchronize and begin oscillating shortly after the leader,
Mote 0, is turned on, displaying the oscillation’s output on their LEDs.
Plotting the values and subtracting the supplied phase difference (see
figure 8), we find that the composition works. The oscillator, as we
expected, diverges owing to communication difficulties and the vari-
able rate of execution on individual motes, but the time synchroniza-
tion operator continually draws it back toward synchrony.

o ur work on Proto and the amorphous-medium abstraction has
laid the groundwork on which the discipline of self-managing
systems engineering can continue to develop. As you would expect
in a young field, many problems of varying difficulty remain.

Much research is necessary on the practical matters of imple-
mentation. Although these problems are less novel, solving them and
integrating the solutions into the overall infrastructure is necessary
to provide a solid foundation for ongoing research. Here are a few par-
ticularly noteworthy implementation needs:

* Energy management in the discrete kernel, such as adjusting trans-
mission frequency and contents to lower expenditure when data
is changing slowly.

¢ Improved bandwidth utilization in the discrete kernel via TDMA
(time-division multiple access), CSMA/CD (carrier sense multi-
ple access with collision detection), or other wireless-communi-
cation algorithms.

e More closely aligning the Proto implementation with Proto’s
semantics.

* Optimizing code by the Proto compiler for time and space. Much
more space- and time-efficient representations of operator trees
are possible. In particular, we’ll investigate both placing static
operator data in program memory and on-the-fly code generation
in the near future.

 Verification of larger programs, by either adding multipacket sup-
port for motes or moving to less-constrained hardware.

www.computer.org/intelligent

Moving beyond implementation, it’s an open question what types
of abstractions are most intuitive for global control of spaces. Can-
didates in the form of distributed algorithms from amorphous com-
puting and elsewhere need to be imported to Proto and analyzed
within its context.

Although we’ve presented a means of composition, a tighter char-
acterization of composed systems is likely possible. In particular,
some amorphous-computing algorithms generally run faster and more
resiliently than the loose bounds established for them, and might
effectively pipeline when composed.

Finally, as the discipline of self-managing systems engineering
develops, it could be extended into domains beyond sensor/actuator
networks. In particular, the amorphous-medium abstraction should
hold for any problem in which the network of computational devices
approximates the topology of the problem being solved. This suggests
that these techniques might be able to solve problems in nonspatial
domains such as semantic networks. Our preliminary investigations
suggest that Proto should be usable in any domain approximated by a
network with a high diameter and small neighborhood. &
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