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Abstract

Proto/Amorphous Cooperative Energy Management (PACEM) aims to build and
deploy a highly scalable system for smart power grids that will enable efficient de-
mand shaping for small-user networks. Two key problems are to provide distributed
control algorithm for efficient demand shaping and to provide an incentive structure
to encourage both users and the electric power sector to opt-in to PACEM. In this
thesis, I address the first problem by designing ColoredPower, a probabilistic con-
trol algorithm. I implemented and tested ColoredPower in MIT Proto, building on
previous work in spatial computing. Simulations in Proto show that ColoredPower

operates within 3% error and provides a stable dynamic response time on the order
of minutes. To address the second problem, I provide a model for user and power
company incentives in PACEM, in the form of the Colored Procurement Mechanism,
which enables further work in optimal algorithmic mechanism design.
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Chapter 1

Introduction

Until recently, growth in electricity demand in urban areas has been met with growth

in power generation. This is not always a feasible solution—building new power plants

is expensive and sometimes harmful to the environment. Power generation varies over

time, depending on factors like the cost of fuel and the prediction of demand. For

newer technologies like solar and wind plants, the power generated changes with the

time of day and the weather. The variable demand for electricity means that the

power available must always meet the highest possible demand. Instead of simply

increasing power generation to meet increasing demand, we could ask people to use

less electricity. This is called demand side energy management. Simply put, when the

demand or “load” on a power grid goes too high, people could turn off unnecessary

devices. If a large number of people reduce their electricity consumption by a small

amount, there would be no need to generate more costly power.

This type of demand side management, done manually, exists for large-scale energy

users e.g. large businesses, manufacturing plants, etc. Small-scale demand manage-

ment is challenging; individual user consumption is small, yet the total consumption

of small-scale consumers is a significant part of the total energy used. My project

delivers results toward solving the problem of managing small-scale demand.
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1.1 Proto/Amorphous Cooperative Energy Man-

agement (PACEM)

Suppose a city power grid is experiencing a heavy load in the middle of the day, and

the city needs to reduce power consumption in the city by about 10% in order to

function properly. One way to do this is for the power company to cut off power for

an arbitrary neighborhood in the city.

What if the power company could instead send out a request saying that the

total power consumption needs to be cut by 10%, so it would be great if a few of

the non-critical electrical appliances around the city were shut off? By shutting off

a few air conditioners, washing machines or other household appliances around the

city, the power consumption could easily be brought down, no one would experience

a blackout, and for all practical purposes, no real functionality of the city would be

lost.

In 2009, residential electricity use accounted for about 35% of the total electricity

used in the United States[3]. This is an area of energy use which is usually flexible.

Most people may be willing to turn off their front porch light for a couple of hours

if it helps the environment. They might also be willing to do their laundry at 9pm

instead of 8pm, especially if it means that they get a discount on their electricity bill

in exchange. The problem is that no number of call centers can handle these sort of

negotiations and control to communicate constantly with every residence, and no one

wants to be bothered by a stream of phone calls and run around the house turning

devices on and off.

Proto/Amorphous Cooperative Energy Management (PACEM)[7] aims to provide

a completely automated solution to this problem. Imagine electrical devices on the

power grid being able to communicate among themselves. The power company sends

out a request to cut the energy consumption by some amount, and the devices ne-

gotiate and decide which of them will shut off, for how long, and at what cost. This

is done taking into account how critical each device is (the computer might be more

important than the laundry machine), and doing so in a way that is “fair” to everyone

16
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Figure 1-1: From the PACEM whitepaper[7]: utilities supply power and request
decreases in demand. Customers specify their flexibility in exchange for lower energy
prices. In each home, smart appliances and outlets communicate to decide which
devices will provide this demand reduction. A network of smart meters manages the
overall demand while an internal wireless mesh network in every home manages the
internal demand in a way that is distributed fairly.

(devices which are equally critical are given equal treatment), all in a fraction of the

time that it would take for the utility to manually call and negotiate with users. A

fully developed PACEM would be able to do all of these things.

1.2 Obstacles to PACEM

I address two key obstacles to realizing PACEM. The first is to design a distributed

control algorithm to run on these devices that satisfies a set of well-defined re-

quirements, which translate into real world practicality. This is a problem in the

realm of spatial computing[1, 21]. I will demonstrate the feasibility of this algorithm,

ColoredPower, with an implementation in MIT Proto and a comprehensive set of

simulations. The second obstacle is to ensure that both end-users and companies in

the electric power sector will want to adopt PACEM. This is a problem in the realm

of algorithmic mechanism design, where we are trying to build an incentive structure

to motivate participation in PACEM. I will give a brief explanation of how PACEM

17



can fit into the electric power sector, and some economic models of PACEM that we

can use to design optimal incentives.

1.3 Previous Work

1.3.1 Spatial Computing and Proto

A spatial computer is a network of devices distributed through space such that the

ability of devices to communicate depends strongly on their proximity[6]. Spatial

computing can work using an amorphous medium abstraction - i.e. the network of

devices is an approximation of an amorphous computational space with a computer

at every point in this space. MIT Proto is a high level programming language where

programs rely on referencing continuous regions of space and time rather than indi-

vidual devices. The main advantage in context of PACEM is that the amorphous

medium abstraction makes algorithms in spatial computing highly scalable[2]. De-

vices can be added or dropped from the network, and each device only needs to be

able to communicate with a few devices around it in order for the system to work.

Further, the proximity-based nature of communication means that no device has ac-

cess to specific information about a large number of other devices. This is important

for privacy concerns, as well as the ability to enforce economic fairness (i.e. no device

should be able to “cheat the system” and profit by lying about their preferences or

collaborating with a small number of other devices).

A fundamental area of study in distributed computing is distributed consensus

- ColoredPower depends on the existence of a consensus algorithm that can report

estimates about different aggregates in the network of electrical devices, even on a

very large network with frequent communication and device errors. Because demand

from residence to residence may be quite different, we cannot develop estimates based

on sampling, but have to incorporate every single device in the aggregation. While

designing ColoredPower, I will stick to a simple consensus algorithm, however, this

can be substituted with more sophisticated existing algorithms e.g.[17, 18, 14].

18



1.3.2 Utility and User Incentives

In economics, the field of Algorithmic Mechanism Design[8] tackles problems mainly

involving “resource allocation” - when the demand for a certain resource does not meet

the supply, and every participant in the market is strategically selfish and has different

preferences, we need to design a mechanism to ensure that the resource allocator

achieves certain goals (e.g. maximum social welfare, maximum profit, etc) There

are many different ways to model PACEM in order to design an optimal economic

mechanism depending on the economic goals we set for the system. We will try to

design applications of existing theoretical approaches in these areas.

1.3.3 Large Scale Demand Response

Manual demand response systems already exist for large energy users. For example,

the Xcel Energy-EnerNOC Peak Savings Program[12] in Colorado works with users

(usually businesses) that can offer more than 100kW in flexibility (which is large com-

pared to residential power consumption of 1-5kW). This program keeps the flexible

demand at these businesses “on call” during the day, and calls the business with an

hour notice to request that they cut their power use for 2-4 hours. Businesses are

allowed to override cut-requests from EnerNOC if they wish at no penalty. A com-

pany called Consumer PowerLine has made progress in providing demand response

in urban multiple-family buildings; it builds electricity pools from clients to create a

virtual power plant that can be activated with a half-hour notice[19].

In the long term, PACEM would also aim to automate this type of demand re-

sponse. Currently, PACEM focuses on small-scale residential users. A neighborhood

of about 100 residences consuming 5kW of power with about 20% demand flexibility,

can provide the same total flexibility(100kW) as a large energy user. This flexibility

will usually be more fine-grained than that of a large energy user as well, since a

manufacturing plant may only have a single high-consumption device, while there are

many small-consumption devices in a residential area.

Another concept in controlling demand is dynamic energy pricing[9]. This means
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that instead of paying a flat rate for electricity (which may change every month or

so) users can pay the going market price for electricity whenever they use it. The

normalized flat rate means that sometimes, low energy users effectively subsidize high

energy users. By charging the going market rate, the rise in peak energy prices can by

propagated directly to the user. If a homeowner can see that she is paying a higher

price for doing laundry at 8pm than doing it at 9pm, she may choose to do it at

9pm. PACEM is open to the use of any pricing model; both ColoredPower as well as

the user incentives described in this thesis can operate with either static or dynamic

pricing.

1.3.4 Smart Grids and Metering

PACEM relies on smart power metering and smart grid technology, where the core

electric power grid is overlaid with intelligent devices that can communicate and do

some processing. An example of technology that would enable PACEM is a smart

outlet that has the ability to record user preferences and communicate wirelessly

within a small home network, such as those shown in Figure 1-2. It would be easy to

adapt the design of existing smart outlets such as the Kill-a-Watt or Watt-Minder in

order to create outlets that are compatible with PACEM. Another example of smart

outlets is in the Long Island Power Authority (LIPA) Edge project. Using Carrier

Comfort Choice thermostats coupled with two-way pager communication, it allows

customers to control their thermostats via the Internet[5].

1.4 Outline

Chapter 2 characterizes the computational requirements for the ColoredPower algo-

rithm and provides a description of the actual algorithm. Chapter 3 describes the

experimental verification methods and the simulations run in MIT Proto, making con-

clusions about the advantages and limitations of the performance of ColoredPower

under different conditions. The first part of Chapter 4 gives a survey of the electric

power sector and economic motivations for the power sector to adopt PACEM. The

20



(a) PACEM Smart Outlet (b) Kill-a-Watt (c) Watt-
Minder

Figure 1-2: From the PACEM whitepaper[7]: A “smart outlet” adapter to plug over
an existing outlet (a). The “Not now!” button allows an override, otherwise a three-
way switch allows the user to set the importance of the particular device operating on
the outlet. The outlet displays its mode with a multi-color LED, and communicates
wirelessly with other outlets, appliances, and its meter box. This would be a small
upgrade on existing technologies like the Kill-a-Watt (b) and Watt-Minder (c).

second part of Chapter 4 dives into algorithmic mechanism design for user incentives

in PACEM. Chapter 5 summarizes the contributions of this project and outlines areas

for further study.
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Chapter 2

The ColoredPower Algorithm

Designing an algorithm to effectively control all the devices on the PACEM network

is challenging. It must be quick, fair, and any single device should only turn on or off

occasionally. We have developed the ColoredPower algorithm as a controller for the

PACEM system, addressing these challenges using randomized local actions. When

the action distribution is adjusted to compensate for currently uncontrollable appli-

ances, standard feedback controllers can be used to produce local actions that combine

to create the desired global effect. In this chapter, I first give an overview of the re-

quirements that ColoredPower aims to meet. Then I describe the ColoredPower

algorithm in detail along with an analysis. I will construct the algorithm in steps,

starting with the algorithm for a simple system and building up to ColoredPower.

2.1 Algorithm Requirements

The algorithm that we need to control the distributed network of electrical devices

must satisfy the following requirements:

1. Demand Flexibility: At any given point in time, the demand for power should

have as much flexibility as possible—either to shut down devices that are cur-

rently on, or to relax and turn on devices that were shut down for demand

response.
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2. Dynamic Response: The algorithm must be able to control the global power

consumption, Qm such that it tracks a changing global target Qt quickly and

reliably. For the current electrical grid, this means a significant response on the

order of minutes. Figure 2-2 gives an idea of how fast the algorithm needs to

be with regard to the different functions of the electric power sector.

3. Fairness: Because PACEM depends on weakly incentivized participation (see

chapter 4), we do not want users of the system to percieve it as unfair, or else

they may stop participating. For example, a user may get upset if his air con-

ditioner gets shut off more than his neighbor’s. To satisfy this, we require that

over a sufficiently long period of time, the expected total power consumption

by two identical devices should be the same. At any time, if two devices have

the same state, they should have an equal chance of deviating from that state.

4. Privacy: Fine-grained power consumption data is a significant privacy concern,

so the data about different users and their devices should remain private. We

thus require that global computations operate on many-consumer aggregates

(which are by nature anonymized), and that no single device should ever have

information about a large number of other individual devices.

5. Scalability: The algorithm must be scalable to very large numbers of devices.

For instance, a large city grid might have tens of millions of devices.

6. Non-intrusiveness: The devices running the algorithm should only switch on or

off occasionally. A user should always be able to “override” the system on a

particular device at any time.

2.2 The ColoredPower Algorithm

Classical control theory provides many ways to track a target value using feedback

systems of various types. The problem we are trying to tackle is of the same nature;

we need to track the total supplied power i.e. the global target, Qt. We want our
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Figure 2-1: Under PACEM, consumers “color” their power demand indicating when
it may be controlled. The algorithm tries to reduce the global measured power con-
sumption Qm from the global total demand Qd to the global target Qt.

Figure 2-2: Time scale of different control decisions in the power system. PACEM
operates on the economic dispatch of generated power.
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global power consumption, Qm to follow the global target as closely as possible. The

total supplied power has many different factors that go into how it changes over

time, including economics of the power companies supplying the power, the capacities

and overhead of the generators producing the power, government regulations, and of

course the global demand for power (called Qd).

The ColoredPower algorithm is designed to fulfill the requirements described in

the previous section via distributed probabilistic control. The three main advantages

of using a distributed probabilistic approach are speed, robustness, and privacy. The

basic idea behind this approach is that instead of trying to aggregate fine-grained

data to a central point, all devices share a model of the aggregate system state.

When the target consumption Qt changes, each device independently calculates what

percentage of devices should change state overall, and then flips a weighted coin to

determine whether it is one of those devices. Although random variance and consumer

heterogeneity make it unlikely that this will immediately succeed, it will quickly take

consumption much closer to the target. When coupled with a feedback controller,

the consumption can be fine tuned to arrive at the target. The law of large numbers

plays to our advantage since the more consumers that participate in the system,

the better that probabilistic control is expected to perform. The decentralization of

control provides robustness, since there need not be any critical points in the network

where a small number of failing devices can cripple the system. Since the control is

local, data can be aggressively aggregated to preserve privacy. The following sections

describe the incremental construction of ColoredPower.

2.3 Building up to ColoredPower

Let us begin by defining the base information that we assume is available for the net-

work of devices. For now, we will ignore power coloring and consider all consumption

to be in a single category. Each device i holds the following state information:

• n, the total number of devices on the network
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Figure 2-3: From the PACEM whitepaper[7]: The “ColoredPower” algorithm esti-
mates flexibility information from the network via an aggregator tree. The utility then
sets a target color range. Each consumer’s household randomly chooses a color, shut-
ting off any appliances more flexible than its chosen color. Under the ColoredPower

algorithm, The gateway device for each household selects a priority level for all ap-
pliances in the household, and any appliances beyond that priority shut themselves
down (subject to customer override).
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• Qt, the current global target (i.e. total supplied power)

• Qm, the total measured power consumption on the network (which we wish to

control to equal Qt)

• Qd, the total power demand from all the devices on the network

• di, the device’s own measured power demand

• mi, the device’s own measured power consumption (we assume it to be 0 when

off and di when on)

• tflip The time remaining until the device is next allowed to flip a coin to decide

whether to change state

Each device is also assumed to have a clock that measures elapsed time with no more

than a small error, and to evaluate its algorithm frequently. Whenever tflip reaches

zero, a device will execute its probabilistic control step, then reset tflip to an expected

value of Tflip (section 2.3.2 describes how Tflip is chosen).

We assume that the global state (n, Qt, Qm, and Qd) is provided by a distributed

aggregation algorithm with some lag. This lag cannot be less than Ω(diameter/c),

where diameter is the number of hops across the network and c is the maximum speed

of information flow per hop. In the ColoredPower implementation for this thesis, we

aggregate using a distance-based spanning tree (as shown in Figure 2-3). We chose

this aggregator for simplicity and its Θ(diameter/c) lag. We expect that a much

more robust aggregator is both possible and necessary for a real deployment.

2.3.1 Simple Local Probabilistic Control

The simplest probabilistic control for Qm to track Qt is to have device i flip a coin

with probability psimple = Qt

Qd
of turning heads. If the coin falls heads, the device

chooses to turn on and consume di power, if not, it chooses to turn off and consume
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Figure 2-4: The simplest block of local probabilistic control in order to achieve the
desired global result in the expected case.

0 power. If each device does this the total consumption will be

E[mi] = psimple × di (2.1)

=
Qt

Qd

× di (2.2)

E[Qm] = E[
∑

i

mi] (2.3)

=
∑

i

E[mi] (2.4)

E[Qm] =
∑

i

Qt

Qd

× di (2.5)

=
Qt

Qd

∑
i

di (2.6)

=
Qt

Qd

×Qd (2.7)

= Qt (2.8)

For example, consider 100 devices, each consuming 1 unit of energy (thus the global

demand is 100), and the global target is 70. If each device turns on with 70% proba-

bility then our expected global power consumption is equal to the global target.

There are two major problems with this design:

1. From iteration to iteration of the local control, there is nothing that prevents

an individual electrical device from switching on and off very rapidly; this is

not an acceptable solution because the rapid oscillation of a single device is

undesirable.
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2. The simple probabilistic control does not account for the variance that comes

with randomization. It is unlikely that the global consumption actually hits ex-

actly Qt. Since we are summing n independent identically distributed random

variables (because the probability is the same for all the devices), the mean of

the sum will be the sum of the means, but and the standard deviation of the sum

will be the norm of the individual standard deviations. Thus the global con-

sumption will likely be somewhere in [Qt−
√
n ∗ p(1− p), Qt +

√
n ∗ p(1− p)].

2.3.2 Timed Local Probabilistic Control

To address the first problem we add timers to every device which ensure that once

a device turns on or off, it stays that way for a period of time. So we introduce the

following new parameters for each device.

• tfall: the time remaining until the device is allowed to decrease its power con-

sumption m

• trise: the time remaining until the device is allowed to increase its power con-

sumption m

Every time a device increases power consumption, tfall gets reset to an expected value

of Tfall. Similarly, if a device decreases consumption trise gets reset to an expected

value of Trise. Devices that have recently changed state are thus “timed out” and

cannot change state again in the opposite direction soon.

When a timer tx is reset to an expected value of TX , it is important that there be

a large amount of variance in the value it is reset to. This effectively desynchronizes

devices from one another, ensuring that in the expected case, there are always some

devices that are allowed to change their state, and therefore some demand flexibility.

Therefore, at each reset of a timer tx, its new value is selected from a uniform random

distribution on the interval [Tx

2
, 3×Tx

2
].

With the addition of these timers, our prior simple probabalistic control will no

longer operate correctly, since timed-out devices are capable of changing state. In
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Figure 2-5: Division of devices into three categories based on their fall, rise, and flip
timers. If a device is unable to move down, it is 1-fixed, and if it is unable to move
up, it is 0-fixed. If it is neither, then it is flippable.

our example, the demand is 100, the target has recently switched from 100 to 70.

We would like our local probabilistic control to give us an expected global power

consumption of 70. Consider this situation, except 50 devices are timed out and

50 are available for a decrease in power consumption. The probability with which

each non-timed-out device decides whether to stay on or turn off is still psimple =

70
100

= 0.7. Then the expected global power consumption at the next step becomes∑
i∈timed out di + psimple ×

∑
i∈not timed out di = 50 + 35 = 85, rather than 70 as desired.

We thus need to adjust psimple in some way that will depend on the number of

devices that are not-timed-out, in order to maintain the accuracy of our expected

global power consumption. To do this we aggregate new global state information

about the state of the network. Each device is classified into exactly one of three

states (Figure 2-5):

• 1-fixed devices: The number of devices unable to fall at that instant (i.e. re-

cently turned on). The total demand for these devices is denoted by Q1

• 0-fixed devices: The number of devices unable to rise at that instant (i.e. re-

cently turned off). The total demand for these is denoted by Q0

• flippable devices: The rest, i.e. the number of devices that are available for

local probabilistic control. The total demand for these is denoted by Qf , and

is a measure of the demand flexibility of the system.

The 1-fixed and 0-fixed terminology comes from the status of the devices as on (1)

or off (0). These values will be collected by global aggregation along with the other
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aggregate values.Note that by definition,

1 fixed+ 0 fixed+ flippable = n

and similarly,

Q1 +Q0 +Qf = Qd

As opposed to the Simple Local Probabilistic Control, where the demand flexibility

is Qd, the demand flexibility is now Qf , reflecting the fact that the control itself

impinges on flexibility. Further, Q1 demand is already fixed as on, which means that

Q1 power is already being consumed regardless of the control at that moment. In

order for the expected consumption to be psimple ∗ Qd, the devices can modify the

local probabilistic control as follows:

pcensus =
psimple ∗Qd −Q1

Qf

Each device that is not timed out flips a coin with probability pcensus. If the coin falls

heads, the device turns on and consumes di power; if not, it turns off and consume

0 power. It is easy to see that if Qf = Qd, i.e. all devices are flippable, then

pcensus = psimple. Note also that if there is not enough demand flexibility to achieve

the target, pcensus will be outside of [0, 1]. In this case, we clip it to [0, 1] to get as

close as possible to the target.
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Figure 2-6: Census adjusted probabilistic control

In general, we have

E[mi∈flippable] = pcensus × di (2.9)

E[mi∈(0,1)fixed] = di, 0 (2.10)

E[Qm] = E[
∑

i

mi] (2.11)

= Q1 +
∑

i∈flippable

E[mi] (2.12)

= Q1 +
∑

i∈flippable

pcensus × di (2.13)

= Q1 + pcensus ×Qf (2.14)

= Qt (2.15)

This timer dependent and census-adjusted local probabilistic control gives us the

desired expected global power consumption, while neatly allowing each device to be

switched between on and off at a non-intrusively low frequency.

2.3.3 Timed Local Probabilistic Feedback Control

We still need to address the problem of variance. We will do this with feedback control

based on the global consumption Qm. We have chosen to use a simple PID controller.

This long-established generic controller, which incorporates a (P)roportional term

to address instantaneous error, an (I)ntegral term to address accumulating “past”

error, and a (D)erivative term to to predict likely “future” error, is a simple and well-

understood starting point for adding feedback control to a system (though we shall
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see in Section 3.4 that a more sophisticated controller will eventually be needed). I

will take a moment here to give more detailed justification for the use of a full PID

controller. The distributed consensus algorithm only delivers estimates that get more

accurate over time. This means that the values of Qm, Qd, Qf etc. may not always

be accurate; in fact, if the target has recently changed, the correct reporting of these

values to the different devices will lag behind the actual network state. We take the

maximum possible lag in the network and call this the feedback delay. Integral error

feedback is a good way to control for delays in measurement. We can use standard

tricks such as resetting the integral term periodically, or putting an exponential back-

off filter on the integral error in order to deal with situations which have a “badly

behaving” target. It is hard for the algorithm to predict how many devices are going

to change their status from being fixed to flippable at time tj, even if the distribution

is known at tj−1. If a large number of devices suddenly becomes flippable, then the

control probability may not adjust in time and cause overshoot, leading to unstable

behavior. Thus, if the error is already decreasing we do not want Qm to suddenly

jump down if a group of devices becomes flippable at that instant. Derivative feed-

back control addresses this concern. At any point in time, the error in tracking is

given by

∆(Q) = Qt −Qm

. Using a PID controller, the desired error correction is:

∆PID(Q) = GP ∗∆(Q) +GI

∫ t

0

∆(Q) +GD ∗
d

dt
∆(Q)

This can be converted into a local probability of change in much the same way as

before: pfeedback = ∆PID(Q)
Qf

. The expected new value after an expected set of flips
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(from time t0 to time t1 = t0 + Tf ) is thus:

E[Qm(t1)] = Qm(t0) + (2.16)

E[
∑

i∈flippable

pfeedback · di] (2.17)

= Qm(t0) + pfeedback ·Qf (t0) (2.18)

= Qm(t0) + ∆PID(Q) (2.19)

If the gains for the PID controller are stable with respect to the delay in obtaining

the aggregate state variables, then Qm may be expected to converge to Qt. Unusual

in the design of a controller, however, it is important that the control be significantly

overdamped. This is because “timed out” devices generally make the system very

slow to recover from overshoots. Thus the controller must be overdamped enough

that it approaches the target in a series of steps, adjusting the flipping probability

using the census as well as the error at every step, and where the probability of

random variance causing a significant overshoot on any step is small.

2.3.4 Adapting to a four color system

With Timed Local Probabilistic Feedback Control, we now have an algorithm that an

control power for a single PACEM “color.” All that remains is to extend it to a

multiple-color system. Note that while we discuss this algorithm in terms of the four

colors in the PACEM proposal, it generalizes trivially to a k-color algorithm.

To generalize from one to multiple colors, we introduce the concept of Range.

The Range is always a real number between 0 (black) and 3 (green), and serves as a

numerical relation between an amount of power and the total power demand, which

is pre-divided into the four colors. Let Qd = Q3
d +Q2

d +Q1
d +Q0

d denoting the division

of the total demand into the four colors, green, yellow, red, and black respectively.

Each device similarly controls four different demands di = d3
i + d2

i + d1
i + d0

i , and has

four different kinds of local power consumption mi = m3
i +m2

i +m1
i +m0

i . Note that

each mj
i is a discrete block of power, i.e. mj

i ∈ {d
j
i , 0}. The maximum i for which
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Figure 2-7: The distributed control algorithm, given the global desired and current
consumption, produces a global command for the new level. This command must
then be translated into a weighted coin-flip, to occur independently at each device,
scaled to take into account the fact that the switching-frequency limitation means
that some devices not currently controllable.

mj
i = dj

i is the color c of the device, e.g. c = 2 would indicate the color “yellow.”

When a power quantity Qx has a Range of rx this means that it includes all of

the power “below” it.

Qx = (rx − brxc)×Qdrxe
d +

∑
i≤brxc

Qi
d (2.20)

brxc = maxi(Q
i
d : Qx ≥ Qi

d) (2.21)

{rx} (the fractional part) =
Qd −Qbrxc

d

Qddrxe
(2.22)

For example, a range of 1.3 would mean that Qx contains all the power in the

“red” and “black” blocks and 30% power from the “yellow” block.

The algorithm uses two ranges: the target range rt corresponding to Qt and the

measured range rm corresponding to Qm (see Figure 2-1). With regards to control,

the fractional and integer portions are handled separately. The integer portion is

simple: when brtc changes, every device in the entire block of power changes to be

on or off (as appropriate) as soon as tfall or trise allow the device to. This portion of

control is naturally quite fast in achieving its goal.

Let us look at tracking the fractional part. There is a Q
drte
t which we need to track

using only the m
drme
i ; our integer tracking has already made sure that brtc = brmc.
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The demand is Q
drte
d and there is already some Q

drte
m which is the power consumption

within that block. We just need to use some local probabilistic control which will

push Q
drte
m toward Q

drte
t . Wait, this is exactly the problem that we solved using the

Timed Local Probabilistic Feedback Control! Instead of ∆(Q) we will introduce the

corresponding error in range,

∆(r) = (rt − brtc)− (rm − brmc)

. This can be plugged into the PID controller as before to produce a pfeedback which,

when combined with integer control to produce radjusted, the local control signal for

each device.

radjusted = brtc+
∆(r)− Q

drte
1

Q
drte
d

Q
drte
f

Q
drte
d

. This completes the feedback controller. Figure 2-8 summarizes the ColoredPower

algorithm. Each device receives aggregated data in the form of the global target, the

global demand, and the global consumption, along with a census of demand flexibility.

The device now infers the target range, measured range, and range-error using this

input. The device goes through decision-tree based on a state table (Figure 2-9)

that takes into account its local parameters: the timers, the local demand, the local

measured consumption, etc. The integer part of the range tells the device what its

minimum color should be, and the fractional part is converted into a probability with

which it should turn on the color above the minimum. Finally, each device supplies the

new local energy consumption and device state (which of the three census categories

it falls into) into the aggregator, leading to an eventual update of the global state

variables.

2.3.5 Handling User Overrides

The way that ColoredPower deals with user overrides is to simply transfer the demand

which is “overriden” to black for a period of time. For example, if a demand tuple is
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Figure 2-8: The distributed control algorithm, given the global desired and current
consumption, produces a global command for the new level.
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Figure 2-9: The state table based on the target range, measured range, and timers
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(d3, d2, d1, d0), and the user overrides a request from ColoredPower to shut off all green

power, then the new demand tuple for the user is (0, d2, d1, d3 + d0). ColoredPower

assumes that only a small fraction of users on the network will override a particular

color of power at any given time. In Chapter 4 we will look at some of the reasoning

behind this assumption.

The presented design of ColoredPower gives a promising distributed probabilistic

control solution for PACEM. It addresses in theory, most of the requirements that

were outlined at the beginning of the chapter including speed, robustness, and privacy.

The next chapter attempts to verify these claims.

40



Chapter 3

Implementation and Testing of

ColoredPower

This chapter describes a series of experiments and presents the results of simulating

ColoredPower in the Proto simulator, demonstrating that ColoredPower behaves as

desired.

I implemented ColoredPower in Proto[6], a high level language where programs

are described in continous regions of space and time, rather than individual devices.

As described in earlier sections, Proto depends on the amorphous medium abstraction,

which views a network of devices as an approximation of a computational material

with a processor at every point. This continuous abstraction makes programs in Proto

highly scalable: if a program works for a neighborhood, it is almost certain to work

for an entire metropolitan area. Figure 3-1 shows an example of how the the Proto

simulator looks while running ColoredPower.

Given a working implementation of the ColoredPower algorithm, we are in a

position to verify the predicted behavior of the algorithm by analyzing results from

the Proto simulator. The simulator takes snapshots of the state of every device which

can be post-processed.
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(a) Stepping between Green and Yellow

(b) Stepping between Yellow and Red with network
links shown

Figure 3-1: A visualization of devices on the PACEM network using the Proto sim-
ulator. Each device is a disc. The color of the disc indicates the power consumption
level of the device.
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3.1 Experiment Setup

For verifying the predicted behavior of ColoredPower, we start with the simple case

of homogeneous demand across residences, with the following parameters:

• A network of n = 100 devices. These devices are distributed randomly in a

100 × 100 unit square. Each device has a communication radius of 50 units.

Thus, the expected diameter for the network is 3.

• We create a demand profile for each device, starting with a fixed tuple of

(d3, d2, d1, d0) = (3, 6, 7, 4) units of power demand in the green, yellow, red

and black blocks respectively. The total possible consumption in the system

is therefore Qd = 100 × (3 + 6 + 7 + 4) = 2000 units. This means that

(Q3
d, Q

2
d, Q

1
d, Q

0
d) = (300, 600, 700, 400)

• We choose Tflip randomly in the interval of [2, 8] seconds with E[Tflip] = 5

seconds

• We choose Trise and Tfall randomly in the interval [500, 1500] seconds with the

E[Trise] = E[Tfall] = 1000 seconds

• The PID controller uses two sets of gains: {0.5, 0.08, 0.3} and {0.4, 0.1, 0.4}, the

two best performing values found via a heuristic parameter search.

• To prevent over-impact from accumulated error, integral error is given a window

of 50 seconds and an exponential backoff filter of coefficient 0.5.

• System state is sampled every 10 seconds.

3.2 Homogeneous Demand

We begin by verifying that the algorithm works correctly under homogeneous de-

mand conditions. We examine behavior using two target profiles: square wave and

sinusoidal. The square wave shows us the step response of the system and gives an

estimate of behavior in worst case conditions, e.g. if a power plant suddenly fails, or
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a major transmission network failure causes effective demand to suddenly drop. The

sinusoidal case shows the system response to smoother, incremental changes. Each

simulation is run for 10 cycles to find expected and worst case behavior.

The step response is tested using a square wave with a period of 8000 seconds,

with one experiment for steps between every possible pair of colors except black (since

consumption cannot fall below red), using the following values for Qt: 2200, 1800,

1400, and 500. Step response graphs are shown in Figure 3-2 and Figure 3-2.

To evaluate the performance of the square wave family we use the measure of con-

vergence time. This is defined as the first time after which the measured consumption

stays within 3% of the target for more than 300 seconds (a tolerance below 3% would

only allow a single device to be wrong in some situations. The overall convergence

times are shown in Table 3.2. As can be seen, fall times are generally significantly

better than rise times (due to an intentional bias in the construction of the feedback

control), but in all cases the system begins responding rapidly and is nearly complete

within 20 minutes.

We tested the incremental tracking using sine waves with periods 100 to 4000,

scaled and offset such that the peak is at 2000 (Qd) and the trough is at 400 (Q0
d).

Each sine wave was run for 40,000 seconds to get at least 10 periods worth of response

data. Figure 3-3 shows a typical long period response: good tracking on the falling

curve and a long delay on the rising curve.

We further measure performance by the phase lag between the measured con-

sumption and the target. This phase lag is computed by minimizing the root mean

squared error (RMSE) between the measured consumption and a sine wave with the

target’s frequency and amplitude (Figure 3-4). The system tracks well with longer

periods above 2000. Below 2000, when the half-wave period is shorter than the con-

vergence time, tracking begins to break down, failing completely at high frequencies.

44



(a) Between > Green and Green

(b) Between > Green and Yellow

(c) Between > Green and Red

Figure 3-2: Graphs showing the average case response to a target square wave which
switches between > Green and the colors in the demand spectrum
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(a) Between Green and Yellow

(b) Between Green and Red

(c) Between Yellow and Red

Figure 3-2: Graphs showing the average case response to a target square wave which
switches between > Green and the colors in the demand spectrum
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Color Combo High Value Low Value
>Green-Green 2200 1800
>Green-Yellow 2200 1400
>Green-Red 2200 500
Green-Yellow 1800 1400
Green-Red 1800 500
Yellow-Red 1400 500

Table 3.1: Power values for the square wave family of experiments

P,I,D Fall Convergence Time Rise Convergence Time
Mean ± Std.Dev. Worst Mean ± Std.Dev. Worst

0.5,0.08,0.3 700 ± 530 1700 1130 ± 400 1760
0.4,0.1,0.4 920 ± 490 1640 1150 ± 390 1630

Table 3.2: Convergence Times for Homogeneous Demand

(a) Response to sine wave target with period 4000 seconds

Figure 3-3: Graph showing the response of ColoredPower to a sinusoidal target
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Figure 3-4: Lag Times vs. Period for PID gain values of 0.5, 0.08 and 0.3. The lag
times for the other PID triple look very similar.

P,I,D Fall Convergence Time Rise Convergence Time
Mean ± Std.Dev. Worst Mean ± Std.Dev. Worst

0.5,0.08,0.3 1240 ± 300 1690 1300 ± 520 1830
0.4,0.1,0.4 1220 ± 420 1780 1300 ± 480 1780

Table 3.3: Convergence Times for Heterogeneous Demand

3.3 Heterogeneous Demand and Overriding

In the next set of experiments, we move closer to a real-world situation. Here, users

have different demand profiles and a small but variable number of users override the

system. The experiments in this situation verify that the simplifying assumptions

made while designing ColoredPower do not fail in a more general case.

To model heterogeneous demand, we change the demand profile from being fixed

at (3, 6, 7, 4), to use (d3, d2, d1, d0) such that each di is an integer chosen at random

between 0 and 10 (inclusive). Over 10 different randomly generated demand profiles,

we look at the step response using a square wave as before. The results are shown in

Figure 3-5 and Table 3.3. We find that convergence times are comparable to those of

homogeneous demand with the exception of fall mean time, which is slightly worse.

Repeating the sine wave experiment for periods over 2000, we find that the tracking

quality is analogous as well.

The way that ColoredPower deals with overrides is to simply transfer the demand

which is “overriden” to black for a period of time. For example, if a demand tuple
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P,I,D Fall Convergence Time Rise Convergence Time
Mean ± Std.Dev. Worst Mean ± Std.Dev. Worst

0.5,0.08,0.3 1240 ± 570 2370 1310 ± 490 2250
0.4,0.1,0.4 1250 ± 580 2080 1310 ± 530 2150

Table 3.4: Convergence times for heterogeneous demand with overrides

is (d3, d2, d1, d0), and the user overrides a request from ColoredPower to shut off all

green power, then the new demand tuple for the user is (0, d2, d1, d3 + d0). We model

a small fraction of overriding by having each device make an occasional independent

decision about whether to override each color di. The likelihood of override is fixed

at 5% and the device decides on average every Toverride seconds, where Toverride is

distributed identially to Tfall and Trise. Whenever there are overrides in the system,

we can expect that the feedback system in ColoredPower will respond as soon as the

new local demand profiles are reflected in the global demand estimate. Since only a

small number of users override the system, we still expect there to be enough devices

such that the system is flexible enough to adapt even with the reduction in demand

flexibility. The results are shown in Figure 3-5 and Table 3.4. As can be seen, the

mean behavior is the same as without override, but the worst case is higher, likely

due to occasionally small perturbations.

3.4 Diameter Variance and Scalability

Finally, we verify that the algorithm is scalable by increasing both the diameter of the

network and the number of devices. For larger networks with increasing diameters, we

expect that the performance of ColoredPower will be better in terms of convergence

time and accuracy for small steps in the global target (due to higher demand flexi-

bility) but the lag time for a fast changing global target (like the sinusoidal family)

will be progressively worse.

The experimental setup uses rectangular boxes of increasing area, with a fixed

communication radius of 20. We use a fixed width x = 20 for these experiments, and

a varying length y starting at 100. The number of devices on the network is equal
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(a) Homogeneous

(b) Heterogeneous

(c) Overrides

Figure 3-5: Comparison of homogeneous demand (top) and heterogeneous demand
response. The graph showing heterogeneous demand (center) also has the different
demand values marked with the appropriate colors. The graph showing heterogeneous
demand with overrides allowed (bottom) includes the mean and std. dev. of the global
demand values.
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Figure 3-6: Lag Times vs. Period for PID gain values of 0.5, 0.08 and 0.3 for the re-
sponse to heterogeneous demand compared to the response to homogeneous demand.

Diameter Fall Convergence Time Rise Convergence Time
Mean ± Std.Dev. Worst Mean ± Std.Dev. Worst

15 450 ± 104 590 915 ± 45 1000
20 400 ± 55 450 932 ± 54 1000
25 388 ± 88 540 928 ± 38 970
50 792 ± 382 1120 910 ± 139 1130
100 1138 ± 25 1170 865 ± 45 900

Table 3.5: Convergence times for varying diameter

to y so as to maintain a dense distribution. Since x is small compared to y, we can

use an approximation of the true network diameter as the number of hops required

to cover the length y of the box (density is high enough that the stretch from indirect

travel is only a few percent[13]). Thus the diameter is

diameter = dy
r
e

As can be seen from Table 3.5, performance improves significantly for larger numbers

of devices, but falls again as lag rises. We expect that part of the degrading perfor-

mance may be due to the PID gain parameters being unable to scale to arbitrary lag.

In the long term, a more sophisticated adaptive control will be necessary.
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3.5 PID Gains

The following method was used to choose the PID gains used in the experiments

described above:

1. Run a parameter sweep across P-gains for the square wave family for a P-

controller. Choose the three best performing P-gains.

2. Run a parameter sweep across I-gains for the square wave family for a PI-

controller with P-gain from the above results. Choose the three best performing

I-gains.

3. Run a parameter sweep across D-gains for the square wave family for a PID-

controller with different PI gain combinations from the above results. Choose

the three best performing D-gains.

4. Run the resulting PID combinations on the sinusoidal family. Pick the best

performing combination.

Some notes of interest regarding these gain values. The integral gain is small

compared to the proportional and derivative gain. In a non-distributed system, one

would expect the integral gain to be higher in order to get a fast response. In this

PID controller, the more we try to lower the convergence time, the more oscillations

(although damped) we will get in the beginning of a step response. It is undesirable

to require devices to turn on or off unnecessarily, so the gains are chosen to be more

“cautious”.

This chapter verifies that the simplifying assumption of homogeneous demand in

ColoredPower is a practical one. The experiments described show that with a more

adaptive feedback control, PACEM can meet its real world design requirements.
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Chapter 4

Incentive Design

We have identified the users and the “utility” or “power company” as stakeholders in

the proposed system of PACEM. However, the “power company” is more than just

a single entity trying to make money by selling power. The electricity that powers a

household light bulb comes from a complex system of both public and private sector

industries, with multiple stakeholders who want different things. We must therefore,

identify exactly where in this economic system PACEM would fit in, and how that

part of the system can be incentivized to use PACEM. This chapter only deals with

the electric power sector in the United States.

This chapter begins with a brief overview of the electric power sector and how

it relates to PACEM. The bulk of the chapter deals with the problem of designing

practical user incentives in an electricity spot market with the goal of maximizing

the surplus of the entity running the market. I will present a Colored Procurement

Mechanism which models PACEM in the domain of algorithmic mechanism design.

I do this starting with a very simple case where there are only 2 users participating

in the PACEM network with 2 possible preferences, and then try to generalize this

scenario for application in a real world PACEM.

53



4.1 The Electric Power Sector

The electric power sector is very time sensitive due to the technology that is used

for power distribution. Electric power grids are dynamic in the sense that electricity

must be supplied exactly when it needs to be consumed. At every point in time, the

power grid has to ensure a balance between the demand and supply of power on the

network. The failure of a single component of the power grid can have devastating

consequences; thus there must be many safeguards in the operation, planning, and

policy surrounding the electric power sector.

From the time electricity is generated at a power plant to when it powers a light

bulb in a household, it must interact with separate entities that perform the following

functions[4]. The relationship between these entities is shown in Figure 4-1.

1. Generation

The electricity that goes into the power grid comes from a multitude of different

power generators, whether they are wind, solar, thermal, nuclear or hydro.

These generation plants are operated by public or private institutions for profit.

2. Transmission

The high-voltage transmission grid is a type of wholesale market for electricity,

which connects generator facilities to cities or other areas of high energy con-

sumption. Transmission is run by an entity separate from the generator and

the distributor, and is either in the public sector or a regulated private sector.

3. Distribution

This low-voltage grid delivers electricity from the transmission grid to the end

users. Distribution involves the equivalent of a retail market for electricity; the

distributor is the “utility” that retail consumers interact with.

4. Regulation

There is a regulatory authority (generally government-controlled and central-

ized) which enforces high level power grid decisions like the total capacity of the
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grid, the coupling (and de-coupling) of the different parts of the power sector,

etc.

5. Consumption

For our purposes, the end user is a house owner consuming between 1 and 5

KW of electricity in a residential neighborhood in an urban area. In PACEM,

it is important how a user’s consumption compares to the overall load on the

grid, and how it compares to other user’s consumption.

6. Protection and Control

These are safety nets in the form of control systems at various points in the

electricity supply chain. They are analogous to a “fuse” which is blown when-

ever something goes wrong to protect an electrical device. They are not very

relevant to the discussion of PACEM incentives, however, they will raise impor-

tant integration and compatibility issues if PACEM is to be deployed on a large

scale.

4.2 Power Sector Incentives

Most of the real time operating functions in the power system described above are

based on safety rather than economic motivations. With newer pricing models and

technologies, real time electricity pricing has become a reality in some places using

smart grids as evidenced by the Federal Energy Regulatory Commission’s Assessment

of Demand Response and Advanced Metering[20]. However, this pricing still can only

motivate the choices of individual consumers and not necessarily the operations of

electricity distribution.

The basic regulatory rules prohibit any single entity from participating in a mo-

nopolistic/regulated activity (like constructing the physical distribution lines) and a

competitive activity (like generating energy or selling retail energy) at the same time.

The distributing activity is regulated so that it is obligated to supply in the area of its
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Figure 4-1: Components of a Power System from “Electric Energy Systems: Analysis
and Operation”[4]
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Figure 4-2: Source: Federal Energy Regulatory Commission (FERC). This figure
shows how a utility can achieve peak reduction in the power load via demand reduc-
tion.

jurisdiction[4]. Figure 4-2 shows in concept the regulated, “non-discretionary” power

supply vs. the additional discretionary supply that a utility normally provides.

There are many decisions to be made on a relatively small time scale regarding

protection, generation control, economic dispatch, and unit commitment in this sys-

tem (Figure 2-2 describes this timescale). PACEM aims to operate on a time scale

which will enable very fast decision making and dispatch of these functions.

Since the retail electric utility buys electricity at a wholesale price from a spot

market, the electric utility may not have any immediate monetary incentive to use

PACEM. Figure 4-3 gives us an idea of the incentives that utilities may have to im-

plement a demand response program like PACEM. As can be seen, the non-monetary

benefits of PACEM are much lower in priority.

The regulatory body’s job is to maximize the social utility by making provision

that protect consumers and investors in the electricity market. It is in this body’s

interest in today’s energy hungry world to reduce demand, and so this body has incen-
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Figure 4-3: This graph describes the results of a survey conducted by a company
called UtiliPoint[19]. Each bar represents the primary incentive for implementing a
demand reduction program as reported by the utilities included in the survey.

tive to support the implementation of PACEM. Currently, a lot of supply-generation

facilities are required to keep generators on reserve to account for sudden rises in elec-

tricity demand. The installation and maintenance of these extra generation units is

not profitable. PACEM offers a solution to deal with sudden spikes in demand with-

out requiring the additional safety generation unit. The disadvantage of depending

on the regulatory body to provide incentives is that it may be very slow and interacts

strongly with the external political environment.

PACEM, and ColoredPower in particular, can easily integrate with any pricing

model which relies on non-specific information about electricity demand. For instance,

customers can use either variable-market-priced or linearly-priced electricity even

though they may be on the same PACEM. This is possible because ColoredPower

makes no assumptions about the price of electricity at any given device; each device

uses the relation between demand and supply (which does not depend on price) to

make decisions. It would be easy to add a layer of decisionmaking in each device that

is dependent on the relationship of that device with the electricity distributor(s), but

independent of other individual devices’ decisions.
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Figure 4-4: Figure from Factsheet 2 of the New England Power Generator’s
Association[15]. The figure shows an example of the relation between market trans-
actions and power transactions in New England. The ISO is the Independent System
Operator.

4.2.1 Electricity Spot Markets

Even with many safeguards and regulations in place, the demand and supply of

electricity often do not meet. A spot market for electricity pricing exists for these

situations[15]. An attempt is made to achieve market clearing i.e. total demand

meets total supply. An example of the relation between the spot market and the actual

power distribution is shown in Figure 4-4. In a spot market, generators submit offers,

and the authority (generally the Independent System Operator (ISO)) chooses which

and how many generators to schedule depending on the demand from consumers. For

the purposes of modeling mechanism design, we assume that it is possible for the

generator to be the direct provider and negotiator of energy with the end users in

such a spot market. We can assume this since the suppliers of electricity (generators,

wholesalers, and retailers) can negotiate using their offers, and the ISO is generally

non-profit.
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4.3 Introduction to Consumer Incentives and Mech-

anism Design

The primary incentive for a user opting into PACEM is a monetary kickback from

the energy savings in the system. EnerNOC has already proven that some types

of consumers are willing to participate in demand-response programs in order to

save energy and money. Also, consumers want more hard data about their energy

usage and in the long term, and we might design a way to provide them with usage

statistics in greater detail through PACEM. Some consumers may be willing to pay

higher prices to maintain the convenience of electricity; if this group of consumers is

large enough, the utility may not be able to provide a sufficient monetary incentive.

In this case, we could try and negotiate with the regulatory authority in the public

sector to subsidize the monetary incentives in the interest of social welfare.

For the rest of this chapter, we will assume that PACEM is able to provide mon-

etary incentives comparable to consumers’ value of electricity. Under this condition,

we assume that every user is trying to maximize his/her own monetary savings from

participating in PACEM. Further, we only look at cases of reducing demand i.e. where

the power generated is insufficient to meet consumer demand. We will not look at

situations where the power generated is greater than the consumer demand.

4.3.1 Mechanism Design Terminology

• Incentive Compatibility: In PACEM, users report their preferences which are

aggregated and sent to the utility. We would like to design a system where

users are motivated to report their preferences honestly. This is to say that

when we design an incentive system for the users of PACEM, a user should

not be able to “game the system” by misreporting her preferences to achieve a

higher payoff than what she would get if she was honest. Such mechanisms are

called incentive compatible or truthful mechanisms.

• Individually Rational: Under the assumption that all users are rational, no user
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should ever get a negative payoff or penalty for participating in PACEM. If a

user has nothing to lose by participating in a mechanism, i.e. her utility is

always ≥ 0, then the mechanism is called individually rational.

• NPT: Many scenarios in mechanism design assume No Positive Transfers, which

means that if a user does not come out ahead in the game, then she gets no

benefit. Particularly, if a user does not “win” in an auction or other resource

allocation game, her utility is 0. We will assume NPT for our design. How-

ever, this may not be true if there is a significant payment to users for just

participating in PACEM, which does not depend on their demand reduction.

• Envy-free: An auction is envy-free if after the auction is run, no bidder would

be happier with someone else’s outcome. We would like PACEM to be envy-

free, because this is a key to users perceiving PACEM as a “fair” system. We

will not investigate envy-free-ness here, but note that PACEM is promising in

this regard since the design of ColoredPower is expected to produce the same

results for two identical users when averaged over time.

• Collusion-resistant: We would like PACEM to be collusion-resistant, i.e. no

user can obtain a higher profit by collaborating with other users.

• Competitive-ratio: We define the competitive-ratio as the factor by which the

auctioneer has to pay extra by running a real time mechanism, as opposed

to the optimal solution when the auctioneer knows all information about the

user/bidder. Here, the “optimal fixed pricing solution” is defined as the incen-

tive distribution that maximizes the utility’s profit if the utility knows all the

information about every individual device.

• Constant-competitive: In order to encourage the power sector to adopt PACEM,

we would like a mechanism that will guarantee a certain profit, which is a

constant factor of the optimal fixed pricing solution (and does not depend on

other situational variables). In other words, this is a mechanism which has a

constant competetive ratio.
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• Auctioneer: In this case, this is the electricity supplier/generator. In context of

the power sector, this is the authority that runs the spot market for electricity

whenever power generation does not meet consumer demand. The auctioneer

in this case is always trying to either maximize his profit by selling something

to the network of users or trying to be as frugal as possible when buying goods

from the network of users.

• Profit/Surplus Maximizing: An auction is said to be a profit maximizing if

it achieves the maximum possible profit/surplus for the auctioneer under the

initial conditions of the auction.

Normally, when the devices in a residence are on PACEM, the user is implicitly

participating in the economic mechanism that goes along with it. We grant the user

the ability to choose whether she wants to override the system during every decision

cycle in PACEM. In an individually rational mechanism, the user would never override

the system unless he/she values the use of a device more than the incentive payment

offered for shutting it off. There will be times when this will happen e.g. during the

Super Bowl, a lot of users may override their television sets. For this analysis, we

assume that mass-overrides are infrequent.

Now let us put some of the quantities from ColoredPower in context. Recall

that the three important aggregate quantities in the system are Qt, the availability

of power, Qd, the demand for power, and Qm, the measured power consumption.

The goal is for Qm to match Qt as closely as possible. From the user point of view,

Qd is split into green, yellow, red, and black. We generalize that Qd =
∑k Qk

d for

a k-colored system. User i has demand dk
i for k-colored energy. There is some set

of valuation functions V which distinguishes between the values that a user has for

different kinds of energy. Consistent with the coloring system, the valuation function

vi ∈ V for user i satisfies vk−1
i ≥ vk−2

i . . . v1
i . The auctioneer’s constraint is a monetary

budget, B. In any mechanism, the auctioneer would like to retain as much of B as

possible while meeting some goals.
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4.3.2 Application of the Digital Goods Auction

There are many mechanisms already designed which deal with resource-allocation

situations. The most relevant one is the digital goods auction[11]. However, this

mechanism is not the best model for PACEM. To see why, let us try to apply this

mechanism in the relatively simple case of homogeneous demand under the following

assumptions:

• dk
i = {0, 1}∀i, k

• None of the players have prior-information about the other players’ values or

bids.

• Use a “money is the good, demand reduction is the payment” model.

The digital goods auction decision problem asks whether any solution exists to this

allocation problem. This is followed by the application of ProfitExtractR, an

algorithm from [11]. ProfitExtractR as defined for this problem has a target

profit R and sells to the largest group of n bidders that can equally share R and

charges R/n to each seller in this group. Here the target profit is R = Qd −Qt, and

each user who contributes to this profit must pay Qd−Qt

n
where n is the total number

of contributors to demand reduction. ProfitExtractR is known to be truthful

and provide a profit of R provided that the total value held by the users is at least

equal to R. Since the auctioneer is looking for a profit of exactly R = Qd − Qt,

we do not have to do any further optimizations to maximize R (unlike the digital

goods auction). ProfitExtractR can be modified to work for non-homogeneous

users as well. However, this is only under the condition there exists a solution to the

underlying optimization problem which is to construct a bundle of goods which is

exactly equal to R. In the case that there is no group of bidders such that the total

demand reduction adds up to R = Qd − Qt, then the auctioneer can simply choose

the highest Qt∗ < Qt where a group does exist. One problem with this approach is

that a group of bidders may have a monopoly if it is the only group which satisfies

the optimization problem.
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While this method looks appealing, it does not let us account for the idea of the

“discretized bidding” by the users which is caused by the system of colors. Further,

this method is also based on the idea that none of the players in the game have any

information at all about the other players. A better approach may be to look at

this system as a Bayesian optimization mechanism problem, i.e. a mechanism design

which assumes some information about the probabilistic distributions of the private

information held by different players, and which also takes into account the discretized

bidding due to the color system. In the following sections we will try to accomplish

the following:

• Describe a practical economic model for the cooperative energy management

system and identify the requirements.

• Design a mechanism which will address all the stakeholders’ goals and the re-

quirements of the model.

• Analyze the mechanism and propose further work to improve upon it.

4.4 Cooperative Energy Management Model

We look at the capacity to produce demand reduction as the capacity to produce a

certain quantity of goods. The cost of producing the goods is the same as the cost of

not using a particular device. So we have a market where there is a single buyer (the

power company) and a number of sellers (the devices). For our model, we will assume

that each device consumes the same amount of power; we normalize this to be exactly

1 indivisible unit. This is a reasonable approximation since PACEM will be operating

on a very large number of devices where each device consumes a very small amount of

electricity compared to the total reduction required. PACEM requires all the devices

in the same color preference in a single home to have the same state, which is not the

case in this model; however it would be easy to add this constraint once we devise

a good incentive system. Thus, every device has the capacity to produce 1 unit of

the good at some cost (which is different for each device). We normalize the cost per
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Figure 4-5: Value of a seller’s good for color ci+1

good to be in [0, 1]. However, each device can only be set to one of a finite number of

colors, k. The important thing to note is that for any cost v of a device, there exist

unique colors ci and ci+1 such that ci < v ≤ ci+1 and in this case, the “truthful” bid

for the device is ci+1. We say that ci+1 is the truthful bid because it is the lowest bid

which is individually rational, i.e. the lowest bid that will earn a non-negative profit.

The buyer, ideally, should not have to pay any more than this lowest bid.

The goal of the buyer is to purchase q = Qt−Qd goods at a minimum price. Thus,

it does not matter to the buyer if a device bids lower than its truthful bid. This is

because if a device sells something for less than its value, that is a better deal than

the buyer expects to have. So, we will not worry about underbidding in this model.

We normalize the color system such that every ci falls between 0 and ck = 1.

Thus, we can describe our desired mechanism, M , to operate in the following

manner:

Definition 1. A Colored Procurement Mechanism M takes the following inputs

1. B, the total budget of the buyer

2. n, the total number of sellers/goods

3. q ∈ 0, . . . , n, the total number of goods that the buyer wishes to purchase

4. b(i) ∈ K : K ⊂ [0, 1], |K| = k, the bids of sellers i ∈ [n]. Every bid b(i) must be

equal to one of c1, . . . , ck
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and outputs p(c), the payments offered by the buyer to sellers who bid c ∈ K

Thus, the buyer’s surplus is B −
∑

i p(i). We would like to design a mechanism

which maximizes the buyer’s surplus while being individually rational. Unfortunately,

it has been shown that it is impossible to design a mechanism which is incentive

compatible, profit maximizing, and collusion-resistant all at the same time[10]. We

will stick to the first two and then try to get as close to collusion resistance as possible.

4.5 2 Color Systems

If k = 1 the system reduces to the trivial case where there is only one bid allowed for

the sellers. So we start by looking at a system with k = 2. This means that there is

essentially a partition in the value-space [0, 1] at some value c where the “truthful”

bid for all sellers below c is c and all sellers above c is 1. Similar to ColoredPower,

ties in bids from sellers are broken via coin flip.

4.5.1 2 Color with 2 Sellers

We start with the simple case with just 2 sellers, assuming that the buyer wants to

purchase 1 unit. So n = 2 and q = 1. We also assume that the buyer’s budget B = 1,

i.e. the buyer will always have a non-negative surplus. The buyer collects the bids

from the players and offers one of them a payment in exchange for their good. The

buyer wants to structure the payment to ensure that the sellers are truthful in their

bids. For now we assume that there is no collusion.

It is easy to see that in the cases where both sellers’ values fall into the same

partition the buyer can trivially enforce truthfulness. In the case where both sellers

have values higher than c only the truthful bid gives them non-negative profits, and

if they are both lower than c then deviating from the truthful bid gives them 0 profit.

Suppose seller 1 has value v1 ≤ c and seller 2 has value v2 > c and they both report

truthfully. The buyer buys from seller 1 since it is the highest surplus. Then seller 2
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Figure 4-6: Two color, 2 seller game

makes no profit, while the profit for seller 1 is

Πtruthful
1 = p(c)− v1

where p(c) ≥ v1 is the payment offered by the buyer to seller 1. The only possible

deviation for seller 1 is to misreport his value as > c, i.e. 1. If seller 1 misreports, he

is not guaranteed to sell since he will be tied with seller 2 and the tie will be broken

with a coin flip by the buyer. The expected profit for seller 1 is thus

E[Πmisreport
1 ] =

1

2
(p(1)− v1)

The incentive compatibility condition says that:

Πtruthful
1 ≥ E[Πmisreport

1 ] (4.1)

p(c)− v1 ≥
1

2
(p(1)− v1) (4.2)

p(c) ≥ p(1)

2
+
v1

2
(4.3)

Since B = 1, p(1) = 1 in order to preserve individual rationality. Thus, in order to

get seller 1 to be truthful, the buyer must pay at least the RHS value in the above

inequality. Since the buyer does not know anything about seller 1 except for v1 ≤ c,
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Figure 4-7: Two Color, n seller game

we get a lower bound for the payment which is

pmin(c) =
1

2
+
c

2

Note that pmin(c) > c for 0 < c < 1.

4.5.2 2 Color with n Sellers

The more general 2 color case is one with n sellers where the buyer wishes to purchase

q units. Assume that s1 sellers have values less than c while s2 sellers have value

greater than c such that s1 + s2 = n. Suppose everyone bids truthfully. The s2 group

does not have any incentive to deviate from their truthful bid, since 1 is the only bid

that gives them non-negative returns. If q < s1, none of the sellers from that group

will deviate since deviating will give them a profit of 0 (because the buyer will not

need to buy any goods from the s2 group). q ≥ s1 gives a situation similar to the one

above, where the s1 sellers in the left partition have a guaranteed sell, while the s2

sellers in the right partition have a probabilistic one. In this case, for a seller in the

left partition with value v1 and a seller in the right with v2 we have

Πtruthful
1 = p(c)− v1 (4.4)

Πtruthful
2 = (p(1)− v2)

q − s1

s2

(4.5)

Πmisreport
1 = (p(1)− v1)

q − s1 + 1

s2 + 1
(4.6)

Πmisreport
2 ≤ 0 (4.7)
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Thus our only incentive compatibility condition is

Πtruthful
1 ≥ Πmisreport

1 (4.8)

p(c)− v ≥ (p(1)− v)
q − s1 + 1

s2 + 1
(4.9)

p(c) ≥ v + (p(1)− v)
q − s1 + 1

s2 + 1
(4.10)

pmin(c) = c+ (p(1)− c)1 + q − s1

1 + s2

(4.11)

assuming that p(1) = 1 and max(v) = c.

The second term in the equation describing pmin(c) gives us the cost of truthful-

ness, i.e. if the buyer knew every individual seller’s actual value, then he could get

away with paying c to all of the sellers whose values are less than c, regardless of their

bids. By agreeing to pay the extra factor, the buyer ensures that every seller’s best

response is to bid truthfully. Note that this extra factor is always non-negative for

q > s1.

The cost of truthfulness as described above is strongly dependent on how s1 and

s2 relate to q. If s2 is very large compared to q− s1, then the cost of truthfulness will

be very low. On the other hand, if s1 +s2 is only slightly greater than q, then the cost

of truthfulness is very high. In the limit case where s1 + s2 = n = q, the buyer must

buy from every single seller at the highest price. Indeed, substituting q − s1 = s2 in

the expression for pmin(c) gives us

pmin(c) = c+ (p(1)− c)1 + q − s1

1 + s2

(4.12)

= c+ (p(1)− c)1 + s2

1 + s2

(4.13)

= c+ (p(1)− c) (4.14)

= p(1) (4.15)

The above arguments show that in order for the buyer to compute pmin(c) apriori,

he must know s1 and s2. This may not be practical in a real setting, which poses

a problem. A more reasonable approach is for the buyer to have some information
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Figure 4-8: k colors, n sellers

about the distribution of the seller’s values in [0,1]. The buyer can then estimate

E[s1] = n × Pr(v ≤ c) and E[s2] = n × Pr(c < v ≤ 1). Then the term 1+q−s1

1+s2
is

replaced by E[1+q−s1

1+s2
] to achieve truthfulness in expectation.

4.6 k Color Systems

In order to extend our 2 color system, we use the following claim

Claim 1. If
∑

j≤i sj < q <
∑

j≤i+1 sj, then

pmin(ci) = ci + (p(ci+1)− ci)
1 + q −

∑
j≤i sj

1 + si+1

The condition on q means that deviating more than one color above the true bid

will give the seller at most 0 profit. In PACEM terms, if the demand reduction q is

satisfied by devices set to green and yellow, then a device changing its bid from green

to red will not turn off and get 0 incentive payment. On the other hand, bidding

truthfully will give the seller p(ci)−v. Thus the only deviation is one color up, which

reduces to the 2 color scenario. Replacing s1 and s2 with the appropriate indices

and cumulative quantities gives us the claim. This claim gives the buyer a payment

system to ensure truthfulness of sellers in color ci or higher.

The problem at hand now is how to incentivize the sellers from c1 to ci−1 to be

truthful. If
∑

j≤i sj < q then those sellers will receive the highest profit from bidding

ci, although their truthful bid might be much lower. I claim that in this situation, the

buyer must pay each seller with value ≤ ci−1 the same amount as the sellers bidding
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ci, otherwise all of those sellers will have incentive to deviate to bidding ci.

4.7 Analysis and Implementation

We have seen that the cost for truthfulness is (p(ci+1)− ci)
1+q−

∑
j≤i sj

1+si+1
. In the optimal

deterministic situation where the buyer knows every seller’s true value, this cost is

0. The overpayment of the buyer can be characterized as argmaxi(
pmin(ci)

ci
), i.e. this

the maximum factor by which the buyer has to overpay compared to a complete-

information system in order to maximize his surplus. In the k color system, we have

that pmin(cj<i) = pmin(ci) so this will depend on the distribution of the ci’s.

For the 2 color system, assuming that p(1) = 1 we have a competitive ratio of

R =
pmin(c)

c
(4.16)

= 1 +
(1− c)
c

1 + q − s1

1 + s2

(4.17)

≤ 1 +
1− c
c

=
1

c
(4.18)

This is because 1+q−s1

1+s2
is upper bounded by 1. Depending on the value of c, this ratio

can be made arbitrarily large. This shows that the value of c is very important to

how well the mechanism will perform. In the limit case where c = 1, we observe that

the ratio is 1, since the only allowed bid and payment is 1. The competitive ratio can

never be more than 1, since the cost of truthfulness will always be positive. Since the

buyer wants to maximize surplus, he wants to minimize the competitive ratio while

preserving the other requirements of the system.

Now let us consider what happens if prior to designing the mechanism the buyer

has the power to choose k and the value of every ci. At this point in time the buyer

knows only the distributions of the sellers’ values v and the distribution for q. We

look at the special case relating to cooperative energy management where k = 3

(actually there are 4 settings for the devices, but the “black” setting is equivalent

to non-participation in the mechanism). Assuming a Gaussian distribution for q,

we want q to be somewhere between two well chosen values of c1 and c2 with high
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Figure 4-9: Choosing ci in a 3 color system

probability, such that the incentive payment pmin(c1) occurs with high probability.

The smaller the difference between c1 and c2, the smaller the cost of truthfulness,

but the lower the probability of q actually falling between them. We need a way to

minimize the expected cost of truthfulness in this scenario. I will not address this

problem here, but suggest a starting point for this line of analysis.

The particular assignment described in Figure 4-9 is given by

c1 = E[
q

n
]− σ(

q

n
) (4.19)

c2 = E[
q

n
] + σ(

q

n
) (4.20)

This assignment means that q will fall between c1 and c2 with high probability. Al-

though this may not result in the minimum expected cost of truthfulness, the pre-

dictability of the cost of truthfulness will be a benefit to the utility.

Now that we have looked at the economics behind incentivization, we can try

to give a tangible way of incentivizing PACEM. We set the following requirements

in order for the incentives to be practical from the perspective of real-world user

expectations:

1. There should be incentive for a user to participate as long as his/her flexibility

is non-zero

2. The incentive should reflect the total demand reduction provided by a user
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3. There should never be any penalties to the user

An individually rational mechanism would address 3, while the colored procure-

ment mechanism will address 2. To address 1, we might add some small incentive

for user participation, although this violates the NPT condition. This should not

depend on what color or amount the demand flexibility is, since this would require

designing another mechanism which deals with truthfulness of users when they “opt

in” to PACEM. Such a mechanism would follow many of the arguments given for

the procurement mechanism, but would make the opt-in process unnecessarily com-

plicated, which is undesirable. Further, if the participation incentive is substantial,

users may opt in to the system and set it to always override. Thus the initial in-

centive can come in the form of a free installation of the smart outlets required for

participation in PACEM.

Users have the opportunity to optimize their preferences for maximum demand

reduction once they participate in PACEM, and the payoff from demand reduction

is designed to be much higher than that of “opting in” in order to encourage users

to commit flexibility first and preferences later. A user setting their preferences is

analogous to placing bids during the procurement scenario. Another factor which can

be incorporated in this model is dynamic energy pricing[9, 16], that would encourage

users to provide more flexibility during peak hours and less flexibility during low-load

hours.

In this chapter, we have made progress in designing a user incentive system for

PACEM in the form of Colored Procurement Mechanisms. This class of mecha-

nisms is useful since it allows for integration with randomized algorithms such as

ColoredPower and provides a concrete way to quantify the cost of enforcing truth-

fulness in user preference reporting. The next step is to solve the optimization of the

cost of truthfulness.
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Chapter 5

Contributions and Future Work

This thesis takes a significant technological step forward in making demand side coop-

erative energy management a possibility for small-scale energy users. The ColoredPower

algorithm along with the incentive structure forms a system that is highly scalable for

large networks in metropolitan areas. This system helps PACEM achieve its design

goals of demand flexibility, dynamic response to changing demand and availability of

power, and non-intrusiveness and privacy for the end user, all while being easy and

cheap to install.

The ColoredPower algorithm is a probabilistic distributed algorithm that runs

simultaneously on a large number of devices in order to accurately control the aggre-

gate power consumed by devices that are “on” to a target value in a non-intrusive

way by ensuring that any single device does not turn on or off rapidly. This is a

contribution to the field of randomized distributed control that allows for changing

local and global conditions, unavailability of parts of the network for long periods

of time and provides a control system to make randomized local actions turn into

accurate global behavior. Although ColoredPower is only described in terms of a 4

color system, it is easy to see that it is applicable to a k-color system as well.

The ColoredPower algorithm is not limited to PACEM in its application. The

ideas behind ColoredPower can describe decentralized algorithms that run on every

individual component of a distributed system in order to control an aggregate prop-

erty of the system, while allowing for changing availability of the components in the
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Figure 5-1: A simple traffic routing problem

system. For instance, it may be possible to adapt and expand ColoredPower for other

distributed resource and task allocation scenarios, such as bandwidth allocation on

networks or vehicle traffic routing. Consider the traffic routing problem as shown in

Figure 5-1, where there are n vehicles trying to get from a source to a destination.

There are two available highways, A and B, with some crossroads connecting them.

Vehicles can only decide to switch between highways if they are near a crossroad.

Once they switch from one highway to another, they cannot switch back until they

get to the next crossroad. The vehicles are equipped with short-range radios that

periodically give them estimates about the total number of vehicles on A and B. The

problem is to route traffic in real time so that neither highway is too congested, with

the constraint that no single vehicle should have to switch highways significantly more

times than other vehicles, since the added travel distance is inconvenient. One can

imagine a ColoredPower type algorithm operating in each vehicle which decides with

some probability whether to switch highways.

The incentive structure that I have proposed ensures that users will not try to game

the system under certain conditions. Algorithmic mechanism design is a relatively

new field at the junction of economics and computer science, and it is important for

the theoretical results to be applied in practical scenarios such as the one described

by PACEM. Large scale demand response exists because it is more profitable and
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easy to implement with a very small number of users. A good incentive structure will

enable participation by a large number of small scale users. If implemented correctly,

small scale demand response can be just as, if not more profitable for the electric

power sector and for the users.

Lastly, PACEM is a system conceived with the goals of saving energy, being

environmentally conscious, and working toward a more efficient society. This thesis

contributes to all of these efforts.

5.1 Future Work

The algorithm we describe has a few limitations that should be addressed in future

work. For instance, the PID gains that are used in the experiments are not suitable

for every type of network. In fact, I suspect that the optimal values for these gains

depend on the network diameter. It would be possible to design an improved version

of ColoredPower using dynamic PID gains that depend on factors like the network

diameter, the census of the system, and the absolute value of the target Qt. Further,

it is unclear that a PID controller is the best feedback controller for the job. Further

work should investigate other types of tracking controllers, which may achieve better

results.

There is much work in the area of mechanism design in the context of distributed

probabilistic control that can be done. For instance, designing a collusion resistant

online mechanism would have the potential to benefit PACEM. In the current network

topology, no user knows specific information about users other than her neighbors. I

predict that this mechanism will likely be resistant to collusion by very small fraction

of users on the network. Future work includes quantifying exactly how collusion

resistant the Colored Procurement Mechanism can be, and what improvements can

be made in this area. In a real world setting, users may use non-PACEM networks

(e.g. the Internet) to exchange information and increase their profits. The mechanism

could then be manipulated by large groups of users whose total pool of demand

flexibility is comparable to the total demand reduction needed; it is doubtful that
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we can design a system which will be resistant to collusion among arbitrarily large

groups of users.

Finally, the next biggest step toward the realization of PACEM is to use prototype

devices to verify that the algorithm and incentive structure (perhaps with some of the

above mentioned improvements) can work on a real system. This will set the stage

for deploying PACEM for actual consumers.
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