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ABSTRACT

Open cyber-physical systems like smart cities, tactical information sharing,

personal and home area networks, and the Internet of Things (IoT) require seam-

less, low latency, peer to peer local interactions between devices. Their potential is

curtailed by the fact that devices currently interact either through device and ap-

plication specific protocols that are not reusable, or centralized infrastructures like

clouds. The recent proposed aggregate computing approach offers a solution to this

bottleneck through a multi-layered architecture. In this thesis, we focus on the mid-

dle layer of Aggregate Computing, which consists of three classes of basis blocks that

are G-block, C-block and T -block, whose compositions, sometimes in feedback, can

be used to realize a wide class of coordination tasks. However, the formal analysis of

individual blocks is limited to self-stabilization which only involves eventual conver-

gence and is not endowed with robustness properties. Further, the stability analysis

of these compositions, though conjectured, is largely unexplored. In this thesis, we

will first investigate the robust stability of the G-block and its variants from a control

perspective, then analyze the dynamics and characterize the stability conditions for

compositions of those basis blocks.

Characterizing each individual block’s behavior is necessary in understanding

their stable compositions. Thus, we formulate Lyapunov functions for two special

G-block distributed algorithms to prove their global uniform asymptotic stability

(GUAS) and global uniform exponential stability (GUES) respectively, as well as

iv



find ultimate bounds on states and the time to attain them, under persistent struc-

tural perturbations. For the generalized G-block, we prove its GUAS and robustness

without using a Lyapunov function. With respect to the compositions, we first study

a state estimation algorithm using an open-loop G-C combination by analyzing its er-

ror bounds and dynamics. We next present a resilient leader election algorithm using

a feedback interconnection of those basis blocks, and prove its GUAS and resilience

under transient perturbations.

We will show that these basis block distributed algorithms exhibit unusual and

subtle state dependencies that are uncommon in standard stability analysis, which

changes both the nature of the Lyapunov functions and the analysis. The ultimate

boundedness we derive will open up the prospect of establishing small gain type

theorems, which in turn helps to demonstrate closed loop stability. Also, the resilient

design and stability analysis of the leader election algorithm will assist in improving

algorithms based on basis blocks, and providing conditions for stable composability.

Ultimately, those analysis works will help us develop constructs and tools that go

well beyond existing approaches and thus will fundamentally impact the standard

stability analysis.

v



PUBLIC ABSTRACT

Open cyber-physical systems have dramatically changed how we relate to com-

puting. These systems allow many computing devices to be involved in provisioning

parts of any given service, and each device may simultaneously participate in multi-

ple services. Realization of the full potential of these systems requires that devices

interact with others in their locality. Ordinary programming approaches are very

device-centric and entangle application design with coordination and communica-

tion, leading to lack of modularity and reusability. Aggregate computing provides an

alternate approach, which simplifies the design, creation, and maintenance of complex

distributed systems by using a layered approach. This thesis focuses on the middle

layer of aggregate computing, which comprises three classes of basis blocks, G-block,

C-block and T -block, that facilitate resilient device interactions. Previous work only

proved those individual blocks to be self-stabilizing without any implication for ro-

bustness, which is an important property in system design. Further, the stability

analysis of their compositions remains largely unexplored.

Our work first addresses the robust stability of G-block and its variants, prov-

ing their global uniform asymptotic stability (GUAS) or global uniform exponential

stability (GUES) and robustness under persistent structural perturbations. Then we

analyze the error bounds and dynamics of a commonly used G-C combination. Fi-

nally, we design a leader election algorithm via a feedback interconnection of basis

blocks, and prove its GUAS and resilience.
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CHAPTER 1
INTRODUCTION

This thesis develops a framework of studying the stability of compositions of

certain basis blocks used to realize resilient interactions at the core of open cyber-

physical systems. Each of these blocks is itself a distributed graph algorithm and

together they form the nucleus of a recently proposed paradigm known as Aggregate

Computing, [10].

As our planet becomes increasingly interdependent and interconnected, the

last few decades have witnessed a proliferation of complex networked distributed

systems involving compositions of numerous physical and logical systems, which may

themselves be distributed. Understanding their dynamics, stability, and reliability

is of critical importance. Robustness and stability have been addressed for limited

classes of large-scale distributed systems in the controls literature for decades [70],

using a mature set of tools from stability theory [45]. In recent years this line of

research has been dominated by the control of multiagent systems, exemplified by

consensus theory [59] and formation control [9, 49, 23, 33, 68, 67]. Classical stability

theory tools like Lyapunov theory, passivity theory [5, 40], center manifold theory

[49, 68], and the Perron-Frobenius Theorem [59], are often leveraged in the analysis.

The ongoing dispersion of services into local devices, manifest in the domains

of open cyber-physical systems like smart cities, tactical information sharing, per-

sonal and home area networks, intelligent transportation, and the Internet of Things

(IoT) [10], however, poses new and challenging problems for analysis and design. All
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require devices to interact safely and seamlessly with others in their vicinity through

low latency peer to peer communication, and to share tasks. What separates them

from more traditional infrastructure reliant cyber-physical systems is that they are

open, and cannot effectively meet user needs unless they support frequent and non-

centralized changes in the applications and services that are being hosted.

Current modes of device interactions restrict the potential of these systems as

they are typically either highly constrained and inflexible (e.g., single-use devices) or

else rely on remote infrastructure like cloud services. The former lacks modurality

and impairs reusability. The latter is centralized with high latency and lacks the

agility to exploit local communication, services, and devices [10]. Section 1.1 describes

aggregate computing that offers a solution to these problems. Section 1.2 describes

the layered approach to aggregate computing. Section 1.3 describes the core issues

animating this thesis.

1.1 Aggregate computing

Aggregate computing offers a potential approach to meeting this challenge by

permitting seamless coordination between complex distributed services. It has been

considered in varying ways by different communities who have generated many pro-

gramming paradigms that are specific to them, [15, 17]. It views the basic computing

unit as a physical region comprising a collection of interacting computing devices,

rather than an individual physical device [10]. In particular, [10] introduces a sepa-

ration of concerns into multiple abstraction layers which are agnostic to each other,
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much like the OSI model [73] does for communication between individual devices,

factoring the overall task of distributed system design for device interactions into

sub-tasks of device-level communication and discovery, coherence between collective

and local operations, resilience, and programmability.

Among the lowest layers, there are fundamental device interactions and a small

universal calculus of aggregate-level field calculus constructs that implement services

such as neighborhood discovery and distributed scoping of shared information. The

next layer facilitates resilient device interactions and can be described by three types

of basis blocks, that are themselves distributed algorithms:

� G Block: This is a spreading block that disseminates information through a

network of devices. For example it can be used to compute generalized distances

of devices in a network from a set of sources. Alternatively, it can be used by

a distinguished set of devices to broadcast information they hold to the devices

that are nearest to them (see Figure 1.1).

� C blocks: This collects information to the source down the gradient of the net-

work to be used by interacting units. For example it may inform a coordinating

unit the net resources available in a network (see Figure 1.2).

� T blocks: This is performs temporal operations, such as delaying the dissemi-

nation of information, or by acting as timers or as time limited memories (see

Figure 1.3).

Introduced in [16] it has been shown that a broad class of coordination services can

be described by various compositions of these three blocks. Figure 1.4 illustrates a
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Figure 1.1: Illustration of

G-block (figure from [35])

Figure 1.2: Illustration of

C-block (figure from [35])

3"

1"
7"

0"
2"

1"
4"

3"
3"

Figure 1.3: Illustration of

T-block (figure from [35])

typical example of such services, in this case making use of G and C blocks to realize

a resource allocation plan. A key function of these blocks is to coordinate interacting

devices using packet-based message passing in a highly distributed environment.

1.2 Aggregate computing layers

Figure 1.5 depicts the abstraction layers of aggregate computing. At the base

is field calculus [26], [25], that models device behavior and interaction. The G, C

and T basis blocks combine to provide resilient coordination and produce APIs for

applications like sensing, decision, and action. These can be invoked in a transparent

way to produce API to implement complex services [10].

From these one can realize and describe a system, potentially complex in

several pieces: First specifying resilient coordination blocks, then specifying how these

impart resilience, then how to realize these blocks and how devices in a network use

them.
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G GController

Distributed 
Services

C

Figure 1.4: Example G-C feedback composition (figure from [58]). A set of distributed

services are managed by a controller device, which accepts load information as input

and provides a resource allocation plan as its output. The blue subsystems are ag-

gregate computing basis blocks. The two to the left of the controller are composed

to implement information collection. The resource allocation plan is disseminated by

the block to the right.

1.3 Approach to stability of aggregate computing blocks

Empirically the dynamics of these basis set systems appear amenable to effec-

tive composition [50, 10, 11], but, barring [27, 58, 56, 57, 7], to date formal analysis

of individual blocks has been limited to self-stabilization [32], which does not ensure

the stability of compositions as it does not guarantee robustness to perturbations

that among other things, e.g., feedback injects perturbations. Accordingly, this thesis

focuses on the robust stability analysis of individual basis block, the resilient design

and stability analysis of their compositions, which include feedback.

Specifically, our thesis presents three interrelated sets of works: (i) stability
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Figure 1.5: Aggregate Computing abstraction layers (figure from [10]).

analysis of the G block and its variants, (ii) stability analysis of an open loop G-C

combination and (iii) stability analysis of a distinguished feedback interconnection

of G and C blocks for leader election. As will be explained in a later chapter, this

algorithm outperforms and is a more resilient to transient leader loss and appearance

of false leaders than the state of the art, [29], [30]. As a first step in understanding

the stability of arbitrary compositions of blocks, it is important to characterize how

these individual systems behave under persistent perturbations. Are their stability

properties robust to perturbations? Does stability in the ideal unperturbed setting

translate to acceptable behavior in the face of perturbations? Such robust behav-

ior cannot be deduced by the mere demonstration of asymptotic stability. Rather,
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as well understood in adaptive control [3], one should instead show global uniform

asymptotic stability (GUAS) of the unperturbed system, as it guarantees total sta-

bility [39], an ability to withstand modest departures from idealizing assumptions.

Thus our approach is to develop Lyapunov based tools and use of them to show both

GUAS and ultimate boundedness under persistent perturbations. Ultimate bounds re-

fer to those achieved following the lapse of initial transients. Such bounds are critical

to addressing issues of composition in open and closed loop. Specifically, ultimate

boundedness can be used in variants of the small gain theorem [45] or equivalent

theorems [4], like the passivity theorem and its offshoots [37, 36] to demonstrate

closed loop stability. While ultimate boundedness by itself is not enough to invoke

the classical small gain theorem, there are more sophisticated variants of this theo-

rem that use ultimate bounds [41, 42] to demonstrate closed loop stability. That a

Lyapunov framework is possible is shown in Chapter 3, where a Lyapunov function is

formulated for two variants of G block, and is used to demonstrate their GUAS and

GUES respectively, as well as show their ultimate boundedness under a limited class

of structural perturbations.

Most aggregate computing blocks are graph based algorithms that update

states at nodes. Analyses in [58], along with other insights we have obtained, reveal

certain challenges not confronted in classical stability theory. First, in most discrete

time nonlinear systems, particularly those obtained by discretizing a continuous time

system, the current state element is an increment on its previous value, making it

natural to compare the two values for the same node. What makes the analysis of the
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G block non-intuitive is that the current state of a node bears no direct relationship

to its previous value, but must be compared with previous states at certain distin-

guished neighbors. This introduces curious dependencies that fundamentally alter the

nature of the Lyapunov functions one uses. Our investigation in [56] suggests similar

interdependencies characterize the C block. Second, it is also important to tightly

bound both the time to converge and the time to attain ultimate bounds. Third, the

perturbation analysis in [58] and [57] reveals the need for new techniques involving

bounding graphs. Fourth, to ensure GUAS and resilience in feedback algorithms like

leader election, moderate modification for individual blocks is needed.

We conclude by distinguishing this approach to that used in the distributed

algorithms literature. The self self stabilization techniques are by their very nature

ill-equipped to cope with the type of persistent perturbations that feedback induces.

Even the literature of other distributed algorithms like those that find the shortest

path between two nodes, [66], [47], [43], [6], [60] and [72], analyze assuming that

perturbation eventually subside. By contrast in this thesis we have developed tools

that permit meaningful analysis even when the perturbations, though bounded, are

perpetual.

1.4 Organization

The rest of the thesis is organized as follows. Chapter 2 introduces the gen-

eralized G block explains its significance, giving examples of its applications. It par-

ticularly focuses on three special cases: the adaptive Bellman-Ford algorithm (ABF)
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algorithm, the most probable path algorithm (MPP) and the generalized adaptive

Bellman-Ford algorithm (GABF). Chapter 3 provides the robust stability analysis of

these three special cases and shows that the first two can be analyzed using the same

Lyapunov function. Specifically, it proves the GUAS of ABF and GABF, as well as

the GUES of MPP. In Chapter 4, we prove the GUAS of the generalized G block.

Chapter 5 presents the stability analysis of compositions of those basis blocks, includ-

ing an open loop G-C combination and a feedback interconnection of basis blocks.

Finally, Chapter 6 concludes the work in this thesis and points out avenues of future

research.
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CHAPTER 2
G BLOCK AND ITS SPECIAL CASES

2.1 Introduction

The basis blocks for aggregate computing are formally described in [71] using

the language of field calculus. In the chapter, we translate the G block that is used to

spread information like distances of devices from a source set through a network, for

those who are unfamiliar with field calculus. The rest of the chapter is organized as

the following: Section 2.2 introduces the generalized G block, which is the primitive

G block defined in [71]. The Adaptive Bellman-Ford (ABF) algorithm and its gen-

eralized version the Generalized Adaptive Bellman-Ford (GABF) algorithm, which

are two special cases of G block, are presented in Section 2.3 and Section 2.4 respec-

tively. Another variant of G block, the most probable path algorithm is introduced

in Section 2.5. Section 2.6 provides some other applications.

2.2 The generalized G block

We begin with the definition of the generalized G block that spreads informa-

tion across a spatial network of devices, potentially further organizing and computing

as it proceeds. This operator is a generalization covering two of the most commonly

used self-stabilzing distributed algorithms: distance estimation and broadcast, as well

as a number of other applications, such as forecasting along paths.

Consider an undirected graph G = (V,E) with V = {1, 2, · · · , N} the node set

and E the set of edges. Nodes i and k are neighbors if they share an edge and can
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communicate with each other. Denote N (i) as the set of neighbors of i. With x̂i(t)

the state estimate of i in the t-th iteration. Then at its core of the most general G

block described later in this section, is the special case where x̂i(t+ 1) ≥ 0 obeys

x̂i(t+ 1) = min

{
min
k∈N (i)

{f (x̂k(t), eik)} , si
}
,∀t ≥ t0. (2.1)

The eik define the structural aspects of G, e.g., they may be the edge lengths between

neighbors; si is the maximum value that x̂i(t) can acquire, which may be either finite

bound or infinite, though the intention is that at least one si is finite.

The function f(·, ·) is progressive i.e., for some σ > 0,

f(a, b) > a+ σ (2.2)

and monotonic in the first variable, i.e., f(a1, b) ≥ f(a2, b), if a1 ≥ a2. and is finite

for finite a and b.

The goal is that with fixed si and eij, the state estimates x̂i(t) converge to

their stationary values

xi = min

{
min
k∈N (i)

{f (xk(t), eik)} , si
}
. (2.3)

We will show later that these values are unique. For example in the ABF described

in Section 2.3, xi = di represents the distance of node i from a source set S. In this

case from Bellman’s principle of optimality these distances obey

di =

{
minj∈N (i){dj + eij} i /∈ S

0 i ∈ S .

Thus in this case f(a, b) = a + b and si = 0 when i ∈ S and infinity otherwise. As

described in Section 2.5, a more general f(·, ·) accommodates non-Euclidean distance
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metrics. For ABF, the stationary values of nodes with finite si equal si. As described

in Section 2.6 it may be desirable for this to not always be the case. Indeed (2.1)

accommodates such settings.

As will be shown in this thesis, a drawback of (2.1) is that underestimates can

rise very slowly to their stationary values. The most general G-block adds certain

frills that speeds up this rise. Proposed in [71], for reasons to be described at the end

of this section, we use a modified version where the state estimates are updated as

x̂i(t+ 1) = F (x̃i(t+ 1), x̂i(t), vi) (2.4)

with x̃i(t+ 1) obeying

x̃i(t+ 1) = min

{
min
k∈N (i)

{f (x̂k(t), eik)} , si
}
,∀t ≥ t0, (2.5)

where vi are certain environmental variables. While f(·, ·) continues to satisfy the

progressive and monotonic properties, the three variable function F (`1, `2, v) is raising

in that for some M it obeys for a dead zone variable, D ≥ 0,

F (`1, `2, v) =


`1 `2 > M or |`2 − `1| ≤ D

g(`2) otherwise

, (2.6)

where M ≥ 0 and the strictly increasing g(x) takes finite values for finite x and obeys

for some δ > 0,

g(x) ≥ x+ δ (2.7)

In (2.4) and (2.6), x̂i(t) = `2. The second bullet in (2.6) permits a faster initial ascent

of x̂i(t). The first bullet yields a state estimate identical to (2.1). We will later show
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that eventually the algorithm always uses the first bullet. Observe that the stationary

points of this generalized block is identical to (2.3) as the second bullet of (2.6) cannot

be invoked at a stationary point. As such M , δ and D are additional parameters that

guide the rate of ascent. Observe (2.1) is a special case with D = ∞, as then the

second bullet of (2.6) can never be invoked.

There are differences both algorithmic and analytical from the original block

given in [71]. First, the dead zone D is zero, in [71]. While this will perform well in

the absence of structural perturbations like those in eij. In the presence of persistent

perturbations `2 = `1 cannot be generically sustained. Thus the second bullet of (2.6)

will almost always be invoked when the state estimate is less than M. This will cause

the state estimates to repeatedly rise to the artificial ceiling of M.

There is also a subtle difference between the assumptions made in [71], and

those we make here. In [71], `i are assumed to lie in a Noetherian ring with M the

maximal element. Translated to our settings this means that one a priori assumes

the boundedness of the states of the algorithm with M, serving as an upper bound.

For distance estimation, this implicitly assumes that one knows the largest possible

distance in the network and that M exceeds that value. For open networks that can

grow unpredictably this is an unappealing assumption.

In contrast we do not assume that the distance estimates are a priori bounded.

Nor do we assume that M exceeds the largest distance estimate. Thus the proof of

self-stabilization given in [71] does not apply to our setting. Rather we prove in

Chapter 4 that the algorithm is GUAS without assuming an a priori bound on the
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state estimates.

2.3 The adaptive Bellman-Ford algorithm

We turn to an archetypal and commonly used version of the aggregate comput-

ing G block, the Adaptive Bellman-Ford algorithm, a globally asymptotically stable

variant of the classical Bellman-Ford algorithm [18], [34], which estimates the shortest

distances of nodes in an undirected graph from the nearest source in a distributed

fashion. ABF eliminates the constraint that all initial distance estimates should be

larger than the actual distances, which is needed for the classical Bellman-Ford algo-

rithm, indicating that the classical Bellman-Ford algorithm is not globally uniformly

asymptotically stable. In particular, under persistent topological perturbations (e.g.

from interaction with other components in a feedback system), these stringent initial

condition requirements cannot be met.

Consider an undirected graph G = (V,E) with V = {1, 2, · · · , N} the node set

and E the set of edges. We define the edge length between node i and node j as eij,

and assume that there exists an emin such that:

eij > emin > 0, ∀i ∈ V and j ∈ N (i), (2.8)

i.e., edge lengths between neighbors are all positive. Define distance dij between

two nodes as the shortest walk from i to j. The principle of optimality specifies the

recursion:

dij = min
k∈N (i)

{eik + djk}. (2.9)

This is also in effect a statement of the triangle inequality. A subset S of the nodes
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in the graph will form a source set. the goal of ABF is to find the shortest distance

between each node and the source set S. More precisely we must find:

di = min
k∈S
{dik}. (2.10)

In view of (2.9), di obeys the recursion:

di =


0, i ∈ S

min
k∈N (i)

{eik + dk} i /∈ S

. (2.11)

In the classical Bellman-Ford algorithm [18, 34] distance from every node in an arbi-

trary graph to a designated source node is estimated by the relaxation of a triangle

inequality constraint across weighted graph edges. However, the classical algorithm

only works if the initial distance estimates are all overestimates, i.e. with t0 the initial

time, for all i

d̂i(t0) ≥ di. (2.12)

In an interconnected environment, the input to the algorithm may be graph topology

or the source set, which may change over time: At a given instant the current estimate

may well fall below the true current distance. Classical Bellman-Ford cannot survive

such perturbations, prompting the adaptive variant.

ABF is based closely on the classical Bellman-Ford algorithm, but unlike that

algorithm, computes distances to the nearest member of a set of source nodes rather

than just a single node. Moreover, we wish to support the case where the set of

sources and/or the graph may change. Thus ABF is an adaptive algorithm that a)

sets the distance estimate of every source node to zero, and b) for all other nodes,
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rather than starting at infinity and always decreasing, recomputes distance estimates

periodically, ignoring the current estimate at a node and using only the minimum of

the triangle inequality constraints of its neighbors. In particular, suppose d̂i(t) is the

current estimated distance of i from the source set. Then the algorithm is:

d̂i(t+ 1) =

{
minj∈N (i)

{
d̂j(t) + eij

}
i /∈ S

0 i ∈ S
, ∀t ≥ t0. (2.13)

The behavior of this algorithm reduces to something very close to the classical

Bellman-Ford in the case where there is precisely one source node and neither the

graph nor the source ever change.

ABF is a special case of (2.4) with M = −∞. It can be readily verified that

(2.13) satisfies the progressive and monotonic properties required by the generalized

G block. In this case, the maximum value si =∞ if i is a non-source node and si = 0

if i is a source.

2.4 The generalized adaptive Bellman-Ford (GABF) algorithm

Though ABF is GUAS and robust to perturbations, underestimates in ABF

are slow to converge. In this section, we present another variant of the generalized G

block, GABF, as an alternative to the ABF. In fact while ABF is a direct special case

of (2.1), GABF is a special case of (2.15, 2.6). Thus, this algorithm has additional

parameters that can be tuned to achieve faster convergence while maintaining the

identical ultimate bounds as ABF under same structural perturbations.

Define d̃i(t + 1) as the following: With S the set of sources and eij obeying
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(2.8), for all t ≥ t0,

d̃i(t+ 1) =


min
j∈N (i)

{d̂j(t) + eij}, i /∈ S

0, i ∈ S

. (2.14)

Then for suitable D ≥ 0 and M > 0, distance estimates d̂i(t) evolves as:

d̂i(t+ 1) =


d̃i(t+ 1), |d̃i(t+ 1)− d̂i(t)| ≤ D or d̂i(t) > M

g(d̂i(t)), otherwise

(2.15)

where M ≥ 0 is a finite number and the strictly increasing g(x) takes finite values

for finite x and obeys for some δ > 0,

g(x) ≥ x+ δ. (2.16)

Further,

d̃i(t0) ≥ 0 and d̂i(t0) ≥ 0, ∀i ∈ V. (2.17)

Thus unlike the ABF, (2.14-2.16) does not assume that distance estimates of the

sources are anchored to zero.

Evidently, GABF is also an instance of (2.4). Initially, most estimates update

according to the the second bullet of (2.15) and for large δ rise rapidly until exceeding

M, then the first bullet is invoked. While the second may again be invoked, we show in

Chapter 3 that there comes a time after which using the first bullet yields immediate

convergence.

Our proof in Chapter 3 will show that underestimates are eventually elimi-

nated. Though not explicitly quantified in our proof, in generic networks and large
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M and δ this elimination is rapid, especially if M exceeds the graph diameter. In such

cases the rising value problem [14] that slows the convergence of underestimates in

ABF is obviated. As our proof is for all M > 0 and δ > 0, it provides a conservative

estimate of the convergence time. However, simulations confirm rapid convergence

when M and δ are large.

Yet we argue that (2.15) and indeed (2.4) are fundamentally nonrobust to

perturbations in the edge lengths. This is so as when M > d̂i, update using the first

bullet requires the precise satisfaction of d̃i(t + 1) = d̂i(t). Because of (2.14) this

precise equality cannot be sustained under perturbations in the eij. This results in

the repeated use of the second bullet and the persistent rise of estimates to M . In

other words ultimate bounds under structural perturbations become M. Thus instead

of (2.15) we use for some D ≥ 0

d̂i(t+ 1) =


d̃i(t+ 1), |d̃i(t+ 1)− d̂i(t)| ≤ D or d̂i(t) > M

g(d̂i(t)), otherwise

. (2.18)

Indeed (2.14,2.16,2.18) is GABF. Of course (2.15) is a special case of (2.18), with

D =∞. A larger D tolerates larger perturbations. At the same time it brings GABF

closer to ABF slowing convergence. This of course accords with the behavior of most

algorithms. Faster systems are high pass filters that amplify effects of noise. As such

M , D and δ are additional parameters that guide convergence rate and response to

perturbations.
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2.5 The most probable path algorithm

The most probable path algorithm (MPP) is also a special case of G block.

While ABF and GABF focus on the shortest path problem, in MPP, conventional

geographic distance between nodes is replaced by a probabilistic value, and instead of

finding a path between two nodes in a graph such that the total sum of edge weights

is minimized, MPP aims to find a path such that the multiplication of weights of its

constituent edges is maximized. The MPP problem has been studied as a routing

approach in various applications, e.g., channel cognitive radio networks, network-

driven contagion phenomena and time-ordered graphs (TOGs), [44] and so on. The

most common solution to this problem is to apply a− log operation on the edge weight

represented by a probabilistic value and then run a Dijkstra-like algorithm [31, 44, 21],

or dynamically search the maximum probability using maximization recursively [64].

Consider the undirected graph G = (V,E). In MPP, eij between node i and j

obeys

0 < emin ≤ eij ≤ emax < 1, ∀i ∈ V and j ∈ N (i), (2.19)

and reflects the success rate of delivery between the connected two nodes. A source

set S ⊂ V comprises nodes called a source. The MPP algorithm aims to enable

each non-source node in the graph find a path with the maximum success rate or

equivalently the minimum failure rate of delivery from the source set.

Suppose p̂i(t) is the estimated failure rate of delivery of i from the source set
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at time t. Then at time t+ 1, p̂i(t+ 1) will update as

p̂i(t+ 1) =


min
j∈N (i)

{1− (1− p̂j(t))eij} i /∈ S

0 i ∈ S

. (2.20)

In our MPP algorithm, the estimated failure rate for a source is fixed at 0. While

for a non-source node, it seeks to find the minimum estimated failure rate at each

iteration while ignoring its previous estimated probability. Specifically, in the second

bullet of (2.20), 1− p̂j(t) represents the estimated success rate of delivery of node j,

(1− p̂j(t))eij represents the estimated success rate of i by communicating with j, and

consequently 1− (1− p̂j(t))eij stands for the estimated failure rate of i through j.

According to the principle of optimality, by using the metric of (2.20), pi the

true failure rate of delivery of i from the source set follows:

pi =


min
j∈N (i)

{1− (1− pj) · eij} i /∈ S

0 i ∈ S

(2.21)

2.6 Other examples

The foregoing is by no means an exhaustive set of useful specializations of the

general G-block. One important algorithm is broadcast, where each node in a network

receives a distinguished value from the source nearest to it.

To see how this can be achieved call the node j that minimizes the first bullet

in the right hand side of (2.13) the current constraining node of i. Then each node

receives the value held by its current constraining node. Though this thesis exclusively

assumes that x̂i(t) is a scalar, one can conceive an added state attached to each node
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as an alternative implementation of broadcast.
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Figure 2.1: Illustration of a tactical wireless network. In this example, circles in red

and yellow are high and low speed external link, respectively. Blue circles represent

nodes routing to the external links. After 3 rounds, all nodes, including the low-speed

link, have converged to route through the high-speed link.

One of the hallmarks of ABF is that nodes with finite maximum states si

converge to si. In some applications this may not be desirable. Thus consider (2.1)

with

f(x̂k(t), eik) = x̂k(t) + eik. (2.22)
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Further, the maximum value si obeys

si =



1 i = 1

5 i = 4

∞ otherwise

. (2.23)

This algorithm here is the same as ABF except that finite si are not necessary zero,

are unequal and x̂1(0), x̂4(0) are not fixed at their maximum values. This setting is

depicted in Figure 2.1. Node 1 (red) and 4 (yellow) represent high speed and low

speed links respectively, to external networks in a tactical wireless network, and the

numbers in green refer to the state estimates. By execution of (2.1), all nodes try to

route to the external network through the shortest effective path. After 3 rounds, all

nodes, including the low-speed link, converge to route the traffic through the high-

speed link, where in this case the stationary state of low-speed link need not equal to

its maximum value even though that value is finite. On the other hand, should node

1 the gateway to the high speed link disappear, then all route through node 4, and

its final state equals its maximum value 4.

2.7 Conclusion

In this chapter, we present a modified version of the generalized G block and

its special cases especially ABF, GABF and MPP. We show that the G block accom-

modates both Euclidean and non-Euclidean metrics, and can be instantiated to fit

various applications. In the next chapter, GUAS or GUES and ultimate bounded-

ness under certain structural perturbations of ABF, GABF and MPP algorithms are
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proved. While the analysis for GABF is not Lyapunov based, that of ABF and MPP

are and intriguingly use identical Lyapunov functions.
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CHAPTER 3
GLOBAL STABILITY THREE SPECIAL CASES OF THE G-BLOCK

3.1 Introduction

Rather than first addressing the stability of the most general Gblock, in this

chapter, we prove the robust stability of three distinguished special cases described

in Chapter 2, namely the Adaptive Bellman-Ford (ABF), the Most Probable Path

(MPP) and the Generalized Adaptive Bellman-Ford (GABF) algorithms. The next

chapter addresses the most general G−block.

This is so as while the stability of GABF and the general G-block is established

without a Lyapunov analysis, the same attractive Lyapunov function is used to prove

the stability of ABF and MPP. Moreover, while in the general case we provide an

upper bound on the time to convergence, for ABF and MPP this bound is tight.

Further all three are of particular importance and the proof of GABF provides insights

into the proof of the general block.

We also analyze robustness to persistent perturbations due to perceived or

real changes in edge length caused by noise and mobility. The perturbations are

assumed to be bounded but persistent in every iteration. They never settle down

to permit convergence. In contrast analysis in distantly related algorithms including

various search and path planning algorithms ([66, 46, 47, 43, 6, 60]), assumes that

the changes are sufficiently slow to permit convergence between successive instances

of structural changes.
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In all cases we provide ultimate bounds on the perturbations in the state

estimates and the time to attain them. Here again the analyses of ABF and MPP are

different from the general G-block, as for these the ultimate bounds are tight as are

the bounds on the time to attain them. As shown in Chapter 4, the corresponding

bounds on the general G-block are not tight and are obtained under an additional

Lipschitz condition on f(·, ·) in (2.1). Sections 3.2-3.4 respectively deal with ABF,

MPP and GUAS.

3.2 GUAS and robustness of ABF

In this section, we provide a Lyapunov analysis of ABF described in (2.13),

including ultimate bounding under a specific class of persistent structural perturba-

tions, [58], [27]. The following assumption holds for ABF.

Assumption 1. The graph G = (V,E) is connected, undirected, with edge lengths

eij ∈ E obeying (2.8) and the distance di of node i from the source set S 6= V obeying

(2.11).

3.2.1 A Lyapunov function

We now provide a Lyapunov function that will be used to prove the GUAS of

(2.13). We first need a few definitions. Recall the true distance di for i ∈ V with V

the set of nodes defined in (2.11), we define the following definition.

Definition 3.1. A j that minimizes the right hand side of (2.11) is a true constraining

node of i of a connected graph G. As there may be two nodes k and l such that

dl + eil = dk + eik, a node may have multiple true constraining nodes. The set of true
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constraining nodes of a node i ∈ V \ S is denoted as C(i). Consider any sequence of

nodes such that the predecessor of each node is one of its true constraining node. We

define D(G), the effective diameter of G, as the longest length such a sequence can

have in G.

In view of (2.11) the following holds:

dk < di, ∀k ∈ C(i). (3.1)

Correspondingly, for ABF defined in (2.13), we have the following definition,

Definition 3.2. A minimizing j in the first equation of (2.13) will be called a current

constraining node of i at time t.

We now show that the effective diameter is finite.

Lemma 3.2.1. Under Assumption 1, D(G) defined above is finite.

Proof. As defined in Definition 3.1, consider a sequence of nodes ki in G such that,

for all ki−1 is a true constraining node of ki. Since there are only a finite number

of nodes in the graph, the only way that D(G) can be infinite is if for some i > j,

ki = kj. From (3.1) this leads to the contradiction:

dki > dkj = dki . (3.2)

The goal of this section is to postulate a discrete time Lyapunov function and

demonstrate that it is non-decreasing. On the face of it, distance estimation errors,

∆i(t) = d̂i(t)− di, (3.3)
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Figure 3.1: Illustration of ABF (adapted from [50]). Individual distance estimates

may go up and down, but the greatest overestimate (∆+) and least underestimate

(∆−) are monotonic. This example shows a line network of five nodes (circles, source

red, others blue) with unit edges (grey links); distance estimates evolve from initial t

= 0 to converge to their correct values at t = 4. The numbers on the edges are the

edge lengths. The numbers on the nodes are their current distance estimates.



28

appear to form a natural measure of the algorithm’s performance. However, as seen

in Figure 3.1, ∆i(t) may well increase in magnitude for individual nodes. This stems

from the nature of ABF given in (2.13): d̂i(t + 1) does not explicitly depend on

d̂i(t). Instead, as will be evident in the sequel, depending on its sign, ∆i(t+1) bears a

natural comparison with ∆j(t) where j is among one of two distinguished neighbors of

i: either a true constraining node of i or a current constraining node at time t. This

subtlety constitutes a key distinction between the analysis here and typical discrete

time Lyapunov analyses.

One requires a more global point of comparison from one iteration to the next.

As empirically studied in [50], the greatest overestimate of the error ∆+(t) and the

least underestimate of the error ∆−(t) below collectively provide such a comparison:

∆+(t) = max
[
0,max

i
∆i(t)

]
(3.4)

∆−(t) = max
[
0,−min

i
∆i(t)

]
. (3.5)

Should, as empirically suggested by [50], each of these be non-increasing then their

sum forms a natural Lyapunov function:

L(t) = ∆+(t) + ∆−(t). (3.6)

Indeed in Figure 3.1, while individual ∆i may increase in magnitude, ∆+ and ∆−

never do. The rest of this section verifies the validity of (3.6) as a Lyapunov function.

We begin by noting that this function clearly meets the non-negativity require-

ment for a Lyapunov function as

L(t) ≥ 0, (3.7)
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with equality holding iff for all i, ∆i(t) = 0. As a matter of fact, it can readily be

verified that L(t) acts as a valid norm for a vector of the distance estimation errors.

As a preface to proving that L(t) is also non-increasing, we define K+(t) as a

set comprising all nodes whose error equals ∆+(t). More precisely:

K+(t) =
{
i ∈ V |∆i(t) = ∆+(t)

}
. (3.8)

Similarly,

K−(t) =
{
i ∈ V |∆i(t) = −∆−(t)

}
. (3.9)

If ∆+(t) 6= 0 then each member of K+(t) has the largest estimation error. This is

however, not necessarily true if ∆+(t) = 0, as then ∆i(t) ≤ 0, for all i ∈ V . If

∆−(t) 6= 0 then its members K−(t) have the most negative estimation error. We now

prove the non-increasing property of ∆+(t).

Lemma 3.2.2. Consider (2.13) under Assumption 1. Then with ∆+ defined in (3.4),

for all t,

∆+(t+ 1) ≤ ∆+(t). (3.10)

Further, consider K+(t) in (3.8), and suppose ∆+(t) > 0. Then equality in (3.10)

holds iff there exists j ∈ K+(t) that is both a current and a true constraining node

(see definitions 3.1 and 3.2) of a member of K+(t+ 1).

Proof. As ∆+(·) ≥ 0, (3.10) holds if ∆+(t+1) = 0. Assume ∆+(t+1) > 0 throughout

the proof. Consider l ∈ K+(t+1) and any neighbor j ∈ N (l) that is a true constraining

node of l, i.e. from (2.11) and Definition 3.1,

dl = dj + elj (3.11)
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Then from (3.8) we find that (3.10) is proved through:

∆+(t+ 1) = ∆l(t+ 1)

= d̂l(t+ 1)− dl

≤ d̂j(t) + elj − dl (3.12)

= d̂j(t) + elj − elj − dj

= ∆j(t)

≤ ∆+(t), (3.13)

where (3.12) comes from (2.13), and (3.13) from (3.4).

Suppose there is a j ∈ K+(t) that is both a constraining and a current con-

straining node of l ∈ K+(t+1). From Definition 3.1, (3.11) holds; (3.12) is an equality

as j ∈ C(l); and (3.13) is an equality as j ∈ K+(t). Thus equality in (3.10) holds.

Now suppose equality in (3.10) holds. Then in the sequence of inequalities

above one can choose l ∈ K+(t+ 1) and j ∈ C(l), i.e. a j that obeys (3.11), for which

both (3.12) and (3.13) are equalities. From (3.8), (3.13) implies that j ∈ K+(t). As

(3.11) implies that j ∈ C(l) and l ∈ K+(t + 1) this must mean a node in K+(t) is a

true constraining node of l ∈ K+(t+ 1). As equality also holds in (3.12), this j is also

a current constraining node of l. The result follows.

The biggest takeaways from this lemma are that ∆+(t) cannot increase, and

that a strict decrease eventuates from iteration t to t+1 unless a node with the largest

overestimate at time t is both a current and a true constraining node of a node that

inherits the largest overestimate at time t + 1. Thus the condition for lack of strict
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decrease for ∆+ is very stringent. We next address ∆−.

There are more subtle properties of (2.13) exposed by the proof. Referring back

to the italicized statement at the beginning of this section, the correct comparison

point of an overestimate ∆l(t+ 1) is not ∆l(t) but in fact the overestimate at t of one

of its true constraining nodes j. In particular with j ∈ C(l),

∆l(t+ 1) ≤ ∆j(t), (3.14)

i.e, this new overestimate cannot exceed the overestimates of the true constraining

nodes of l.

Similarly, the following lemma shows the non-increasing property of ∆−(t).

Lemma 3.2.3. Consider (2.13) under Assumption 1. Then with ∆− defined in (3.5),

for all t,

∆−(t+ 1) ≤ ∆−(t). (3.15)

With K−(t) as in (3.9), unless ∆−(t) = 0, equality in (3.15) holds iff there exists

j ∈ K−(t) that is both a true and current constraining node of a member of K−(t+1).

Proof. As ∆−(t + 1) is nonnegative (3.15) holds if ∆−(t + 1) = 0. Thus assume

∆−(t + 1) > 0. Consider any l ∈ K−(t + 1). Because of (2.13) there is a j ∈ N (l),

such that

d̂l(t+ 1) = d̂j(t) + elj (3.16)
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Further, ∆−(t) cannot increase as

∆−(t+ 1) = −∆l(t+ 1)

= dl − d̂l(t+ 1)

= dl − d̂j(t)− elj

≤ elj + dj − d̂j(t)− elj (3.17)

= −∆j(t) (3.18)

≤ ∆−(t) (3.19)

where (3.17) comes from (2.11) and (3.19) follows from (3.5).

Suppose equality in (3.15) holds. Then for some l ∈ K−(t+1) and a j satisfying

(3.16), both (3.17) and (3.19) are equalities. From Definition 3.2, j is a current

constraining node of l. From Definition 3.1 equality in (3.17) implies that j is also

a true constraining node of l. From (3.9), equality in (3.19) implies that j ∈ K−(t).

Thus, as l ∈ K−(t + 1), ∆−(t + 1) = ∆−(t) only if there exists j ∈ K−(t) that is a

true constraining node of an l ∈ K−(t+ 1).

On the other hand suppose for some l ∈ K−(t + 1), there is a j ∈ K−(t) that

is both a current and true constraining node of l. Then from Definition 3.2, (3.16)

holds. Further j ∈ K−(t) implies equality holds in (3.19). As j is a true constraining

node of l equality also holds in (3.17), proving equality in (3.15).

Lemma 3.2.2 and Lemma 3.2.3 together show that for all t,

L(t+ 1) ≤ L(t), (3.20)
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validating the fact that L(t) is indeed a Lyapunov function. Moreover, equality in

(3.20) holds under stringent conditions. In fact as shown below in Theorem 3.2.4, a

strict decline in L(t) must occur every D(G) iterations, where D(G) is the effective

diameter in Definition 3.1. Theorem 3.2.4 also provides the aesthetically appealing

result that d̂i = di, for all i ∈ V is the only stationary point of ABF.

Theorem 3.2.4. Under the conditions of Lemma 3.2.2 and Lemma 3.2.3, with D(G)

as in Definition 3.1, L(t) as in (3.6), the following holds unless L(t) = 0 :

L(t+D(G)− 1) < L(t) ∀t ≥ t0. (3.21)

Further d̂i = di, ∀i ∈ V is the only stationary point of (2.13).

Proof. Suppose L(t) > 0. From Lemma 3.2.2 and Lemma 3.2.3, (3.20) holds. Suppose

now for some t and T and all s ∈ {1, · · · , T − 1}, L(t+ s) = L(t). Then from Lemma

3.2.2 and Lemma 3.2.3 there exists a sequence of nodes n1, · · · , nT , such that ni is

a true constraining node of ni+1. From Lemma 3.2.1 this means T ≤ D(G). In

fact T ≤ D(G) − 1. To establish a contradiction, suppose T = D(G). Then in the

proofs of Lemma 3.2.2 and Lemma 3.2.3, j = n1 ∈ S. Thus from (3.13) and (3.19),

∆+(t) = ∆−(t) = L(t) = 0. Thus unless L(t) = 0, L(t+D(G)− 1) < L(t).

Suppose for all i ∈ V , d̂i = di. For i ∈ S, and all t, d̂i(t) = 0 = di, d̂i(t+ 1) =

0 = di, also holds. Now consider any i ∈ V \ S. Then from (3.1), there holds:

d̂i(t+ 1) = min
j∈N (i)

{
d̂j(t) + eij

}
= min

j∈N (i)
{dj + eij}

= di.
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Thus indeed d̂i = di, ∀i ∈ V is a stationary point of (2.13). Now consider any other

candidate stationary point d̂i = d∗i , with

d∗ =
[
d∗1, · · · , d∗|V |

]
6=
[
d1, · · · , d|V |

]
. (3.22)

Suppose also at some t, and all i ∈ V , d̂i = d∗i . Then L(t) > 0. From the first part of

this theorem, (3.21) holds and

[
d̂1(t+D(G)), · · · , d̂|V |(t+D(G))

]
6= d∗.

Thus d∗ cannot be a stationary point.

Of course without establishing a uniform bound from below on the extent of

decline in (3.21), we cannot establish global uniform asymptotic stability. The next

section does just that.

3.2.2 Global uniform asymptotic stability

This section establishes the global uniform asymptotic stability of ABF and

tightly bound its convergence time. Recall that (3.6) has two components (the largest

overestimate ∆+(t) and the largest underestimate ∆−(t)), that the classical Bellman-

Ford algorithm only copes with overestimates as it initializes to ensure (2.12), and

that the motivation behind (2.13) is to permit underestimates.

It turns out that there is a fundamental disparity between the behaviors of

under and overestimates in (2.13): Overestimates converge rapidly. Underestimates

do not. Why this disparity? The key lies in (3.14). When ∆l(t+1) > 0 the j in (3.14)

is a true constraining node of l, while if ∆l(t + 1) < 0, it is a current constraining
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node of l for the algorithm at time t. While true constraining nodes are fixed by

the graph, current constraining nodes may change. Moreover, a pair of nodes may

constrain each other at alternate instants, and should they share a short edge, their

distance estimates rise slowly in tandem by small amounts. Dubbed in [14] as the

rising value problem, this can lead to slow convergence.

By contrast, the following theorem shows that the overestimates all vanish to

zero in at most D(G) − 1 steps, where D(G) − 1 is the effective diameter defined in

Definition 3.1.

Figure 3.2: Illustration of the tightness of convergence time (figure from [58]). The

subgraph comprising the nodes S and {1, · · · , n} is used in the proof of Theorem

3.2.5. The entire graph is used in the proof of Theorem 3.2.9.
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Theorem 3.2.5. Under Assumption 1, ∆+(t) defined in (3.4) obeys

∆+(t) = 0, ∀ t ≥ t0 +D(G)− 1. (3.23)

Further, for every n = |V | > 1 there is a G = (V,E), obeying Assumption 1 and a

set of initial conditions such that ∆+(t) > 0, for all t < t0 +D(G)− 1,

Proof. As G is connected, every node belongs to a sequence of nodes n1, n2, · · · , nT ,

such that ni is the true constraining node of ni+1 and n1 ∈ S. From Lemma 3.2.1,

T ≤ D(G). We now assert and prove by induction that,

∆ni
(t) ≤ 0, ∀ t ≥ i− 1 + t0, and i ≤ T. (3.24)

Then the result is proved from (3.4). As n1 ∈ S, (3.24) holds from (2.13). Now

suppose it holds for some i ∈ {0, · · · , T − 1}. As ni ∈ C(ni+1) ⊂ N (ni+1), from

(2.13), (3.1) and the induction hypothesis, for all t ≥ i+ 1 + t0,

d̂ni+1
(t) ≤ d̂ni

(t− 1) + eni+1ni

≤ dni
+ eni+1ni

= dni+1
.

Thus (3.24) and hence (3.23) is true.

For the second part of the theorem, we first observe that if j is both the true
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and current constraining node of i. Then

∆i(t+ 1) = d̂i(t+ 1)− di

= d̂i(t+ 1)− dj − eij

= d̂j(t) + eij − dj − eij

= ∆j(t). (3.25)

In the subgraph, Ĝ comprising the nodes S and 1, · · · , n in Figure 3.2, D(Ĝ) = n+ 1.

Denote S = 0. Suppose for all i ∈ {1, · · · , n}, 0 < ∆i(t0) < e. The result is proved if

we show that for all 0 ≤ j ≤ t < i ∈ {1, · · · , n}

0 < ∆i(t+ t0) < e, ∆j(t+ t0) = 0, (3.26)

and i−1 is the current constraining node of i. Observe for all k ∈ {1, · · · , n}, dk = ke,

k − 1 is the true constraining node of k, and for all k ∈ {1, · · · , n− 1} (3.26) implies

that

d̂k+1(t+ t0) + ek+1,k = (k + 1)e+ ∆k+1(t+ t0) + e

≥ (k + 2)e

= dk−1 + 3e

> dk−1 + ∆k−1(t+ t0) + 2e

> d̂k−1(t+ t0) + ek−1,k,

i.e. k−1 is the current constraining node of k. As n−1 is the only neighbor of n, this

is also true for k = n. Use induction to prove (3.26), which holds for t = 0. Suppose

it holds for 1 ≤ t < m < n. As 0 < ∆i(m + t0) < e for all i ∈ {m + 1, · · · , n}, from
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(3.25), the inequality in (3.26) holds. As ∆m−1(t + m − 1) = 0, and m − 1 is the

current constraining node of m, so does the equality.

The proof of (3.23) implicitly expands on (3.14). Specifically, one can view ni

in the proof as being a node that is effectively ni−1 hops away from the source set. At

the i-th instant suppose l in (3.14) is a node that is (i+ 1) effective hops away. Then

for this node the actual error is forced to be nonpositive, as j its true constraining

node, one effective hop closer to the source set, acquires a nonpositive estimation

error an iteration earlier. As we show below underestimates lack this property.

Depending on the initial distance estimates and the graph topology, ∆+(t)

may converge to zero in fewer than D(G)− 1 rounds. This may happen for example,

if ni acquires a negative error after i − 2 iterations, then convergence of ∆+(t) to

zero occurs an iteration sooner. Nonetheless the upper bound on the time for ∆+ to

converge is tight in the sense that for all |V | ≥ 2, there is a graph and an initialization

where convergence cannot occur before D(G) − 1 iterations. The proposition below

shows more: If no initial estimate is an underestimate, then convergence occurs in at

most D(G)− 1 iterations. The proof follows from Lemma 3.2.3 and Theorem 3.2.5.

Proposition 1. Under Assumption 1, suppose ∆−(0) = 0. Then the Lyapunov

function L(t) defined in (3.6)

L(t) = 0, ∀t ≥ D(G)− 1,

where D(G) is defined in Definition 3.1.

This underscores why the classical Bellman-Ford algorithm requires that ∆−(0) = 0.
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The next theorem quantifies the rising value problem that causes a slower decline

in ∆−(t). Indeed, the classical Bellman-Ford algorithm, which assumes (2.12) will

also yield the same convergence time. But of course it cannot cope with initial

underestimates.

Theorem 3.2.6. Under the conditions of Lemma 3.2.3, consider a pair of nodes i

and j such that ∆i(t0) < 0 and

j = arg min
j∈N (i)

{eij}.

Then ∆i(T ) ≥ 0 implies

T ≥ t0 −
∆i(t0)

eij
.

Proof. From (2.13) for any t

d̂j(t+ 1) ≤ d̂i(t) + eij. (3.27)

Likewise, as j ∈ N (i), using (3.27) the result follows as,

∆i(t+ 2) = d̂i(t+ 2)− di

≤ d̂j(t+ 1) + eij − di

≤ d̂i(t) + 2eij − di

= ∆i(t) + 2eij.

Thus the rising value problem may occur even if a pair of nodes with under-

estimated distance estimates do not constrain each other. Rather the rise is limited

by the smallest edge length impinging on a node with the largest underestimate.
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Figure 3.3: Plot from [58] of (a) greatest overestimate ∆+(t) and (b) least underes-

timate ∆−(t) for 10 runs of 500 nodes randomly distributed in a 4x1 sq. km area,

showing that overestimates correct much faster than underestimates.

This behavior is shown in Figure 3.3, where 500 nodes, including a solitary

source, are uniformly distributed in a 4×1 km2 field. Each has a communication range

of 0.25 kilometers, i.e, the average size of N (i) is 20. The initial distance estimates

of non-source nodes are chosen randomly in U(0, 4.12) kilometers. Figure 3.3 shows

the results of 10 simulations, each run synchronously for 2000 seconds with 1 second

per round. The results are consistent with our analysis: ∆+(t) decreases rapidly to

zero within at most 4 rounds, even though D(G) = 14. On the other hand, ∆−(t),

limited by close pairs of nodes, has much slower convergence. Observe that the

classical Bellman-Ford algorithm would have yielded the same type of trace as in

Figure 3.3(a), but cannot deal with the violation of (2.12).

The next lemma helps lower bound the decline in ∆−(t).
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Lemma 3.2.7. Under the conditions of lemmas 3.2.2 and 3.2.3 define,

S−(t) = {i ∈ V |∆i(t) < 0} , (3.28)

and

d̂min(t) = min
i∈S−(t)

{d̂i(t)}. (3.29)

Then with emin defined in (2.8), the following holds unless S−(t+ 1) is empty:

d̂min(t+ 1) ≥ d̂min(t) + emin, ∀t ≥ t0. (3.30)

Proof. Suppose S−(t + 1) is not empty. Then from Lemma 3.2.3, and (3.9), S−(t)

cannot be empty. Consider any i ∈ S−(t+1) and suppose j is its current constraining

node at t. Then we assert that j ∈ S−(t). Indeed assume j /∈ S−(t). Thus d̂j(t) ≥ dj.

As j ∈ N (i), from Definition 3.2 and (2.11),

d̂i(t+ 1) = d̂j(t) + eij

≥ dj + eij

≥ di.

Thus i /∈ S−(t+ 1), establishing a contradiction. Hence j ∈ S−(t). Then from (3.28)

and (3.29), (3.30) holds as ∀ i ∈ S−(t+ 1),

d̂i(t+ 1) = d̂j(t) + eij

≥ d̂min(t) + emin.
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We now prove that the decline in (3.21) is uniformly lower bounded, proving

global uniform asymptotic stability.

Theorem 3.2.8. Under conditions of Theorem 3.2.4, there exists α > 0, dependent

on the initial conditions but not t0, such that

0 ≤ L(t+D(G)− 1) ≤ max[L(t)− α, 0], ∀ t ≥ t0. (3.31)

Further the unique stationary point of (2.13), ∆i = 0 for all i ∈ V , is globally

uniformly asymptotically stable.

Proof. As the postulated α in (3.31) is fixed by the initial conditions and is indepen-

dent of the initial time t0, (3.31) proves global uniform asymptotic stability. From

Theorem 3.2.5, the set of ∆+(t) is a finite countable set that includes zero. Similarly,

because of Lemma 3.2.3 and (3.30) of Lemma 3.2.7, so is the set of ∆−(t), as d̂min in

(3.29), must equal the true distance it estimates in a finite time. Thus L the set of

L(t), for all t ≥ t0 is a finite countable set. Then α, the smallest difference between

the elements of this set, is positive unless L(t0) = 0, and while dependent on the

initial conditions, is independent of t0. From Theorem 3.2.4 a decrease in L(t) occurs

every D(G) iterations. As L(t) ∈ L, any change must be by at least α.

We now tightly bound the time to convergence.

Theorem 3.2.9. Consider (2.13) under the conditions of Theorem 3.2.8, D(G) as in

Definition 3.1 and emin in (2.8). Define

dmax(G) = max
i∈V
{di}, (3.32)
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for G = (V,E). Then L(t) = 0, ∀ t ≥ t0 + T , where,

T = max

{
D(G)− 1,

⌈
dmax − d̂min(t0)

emin

⌉}
. (3.33)

Further for every n = |V | > 3, there exists a G satisfying Assumption 1 for which

L(t) > 0 for all t < T .

Proof. From Theorem 3.2.5, ∆+(t0 + D(G) − 1) = 0, accounting for D(G) in (3.33).

From Lemma 3.2.7, and any i ∈ S−(t) in (3.28), one obtains for any t ≥ t0,

∆−(t) ≤ di − d̂i(t)

≤ dmax − d̂min(t)

≤ dmax − d̂min(t0)− (t− t0)emin.

Thus ∆−(t) = 0, whenever

t− t0 ≥ T− =

⌈
dmax(G)− d̂min(t0)

emin

⌉
. (3.34)

To prove that convergence time can be as much as T , consider the graph in Figure 3.2

with emin < e. Assume for all i ∈ {1, · · · , n}, d̂i(t0) > di, and d̂n+i(t0) = d̂2n+i(t0) = 0.

Then for all i ∈ {1, · · · , n}, and all t, ∆i(t) ≥ 0, and ∆n+i(t) = ∆2n+i(t) ≤ 0. From

the proof of Theorem 3.2.5, it takes exactly D(G)− 1 iterations for ∆+ to converge.

Now consider ∆−(t). For simplicity assume t0 = 0. Suppose⌈
e

emin

⌉
= m. (3.35)

Then we assert that for all i ∈ {1, · · · , n},

d̂n+i(t) = d̂2n+i(t) =

{
temin i ∈

{⌊
t
m

⌋
, · · · , n

}
dn+i otherwise

. (3.36)
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Call each pair 2n+ i and n+ i partners. When t ∈ {1, · · · ,m−1}, as e > emin,

and d̂2n+i(0) = d̂n+i(0) = 0, these nodes constrain each other and their respective

distance estimates rise by increments of m. Thus all d̂2n+i(m) = d̂n+i(m) = e. Thus

d̂2n+1(m) = d̂n+1(m) = d2n+1 = dn+1 = e, and at t = m the nodes n + 1 and n + 2

are constrained by S, while the remaining are constrained by their partners. Since

distance estimates cannot fall in value, for all t ≥ m, n+ 1 and n+ 2 are constrained

by S, and d̂2n+1(t) = d̂n+1(t) = d2n+1(t) = dn+1(t) = e, for all t ≥ m. Continuing this

argument (3.36) is readily proved. Thus,

d̂3n−1(t) = d̂2n−1(t) < ne = d2n−1 = d3n−1, ∀t < mn. (3.37)

Result follows from (3.34) as d̂min(0) = 0, dmax(G) = ne and

mn = n

⌈
e

emin

⌉
=

⌈
dmax(G)− d̂min(0)

emin

⌉
.

Thus the bound on convergence time is tight, though the worst case nature of

the analysis also makes it conservative.

3.2.3 Robustness under perturbations

We now turn to the robustness of ABF to possibly persistent perturbations in

non-source nodes with the goal of demonstrating ultimate boundedness (per the defi-

nition in [45]) of distance estimates around nominal distance values. We consider the

behavior of ABF in a framework with two physical interpretations. 1) Nodes experi-

ence bounded, potentially perpetual motion around nominal locations. In aggregate
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computing this captures an incremental version of the common scenario of mobile

computing devices or of imprecise localization. 2) A node receives noisy distance

estimates of its neighbors.

Consider first the case where each non-source node moves around a nominal

position, i.e., edge lengths change from their nominal values eij as

ēij(t) = eij + εij(t). (3.38)

Mobility is assumed to be both bounded and small, i.e., there exists an ε such that

with emin defined in (2.8),

|εij(t)| < ε < emin. (3.39)

This ensures that no edge length is ever negative. Based on this assumption of

bounded mobility, we also assume that the set of neighbors N (i) of each node i does

not change.

This also accommodates the setting where noisy estimates of d̂i(t) available

to its neighbors, with εij(t) modeling the noise. Unlike the setting of mobility in this

case we cannot assume that the noise is symmetric, and permit

ēij(t) 6= ēji(t). (3.40)

In particular ēij(t) is the noisy edge length seen by node i as opposed to node j. Thus

(2.13) must be interpreted as:

d̂i(t+ 1) =

{
minj∈N (i)

{
d̂j(t) + ēij(t)

}
i /∈ S

0 i ∈ S
(3.41)
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As

d̂j(t) + ēij(t) = d̂j(t) + eij + εij(t)

= (d̂j(t) + εij(t)) + eij,

this captures the execution of ABF with noisy measurements of d̂j(t). The problem

formulation is otherwise unchanged. The nominal graph is still G = (V,E), undirected

in that i ∈ N (i) implies j ∈ N (j) and eij = eji, and the goal is to study the

perturbations of d̂i(t) from the nominal distances di. We now define a shrunken

version of G, which represents the graph with the shortest links permitted by our

perturbation model. We will show that the distance estimates provided by ABF

when applied to this graph lower bounds all d̂i(t). This will help provide the lower

ultimate bounds and the time to attain them.

Definition 3.3. Given G = (V,E), the undirected graph G− = (V,E−), has the

property that edge (i, j) ∈ E− iff (i, j) ∈ E. The edge length e−ij between nodes i and

j obeys

e−ij = eij − ε, (3.42)

with ε defined in (3.39). Further G− has the same source set S as G, each i has the

same set of neighbors as in G, and Di is the shortest distance between i and the

nearest source node, i.e. plays the role of di in G.

Our goal is to prove the ultimate boundedness of the d̂i(t) provided by (3.41)

by examining their difference with the nominal distances di, through L(t), which
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Figure 3.4: Examples of effective diameter (figure from [58]), showing edge length as

labels on edges. In the left graph G, D(G) = 4 and comes from the sequence S, A, B

and C, where each node is the true constraining node of its successor. On the other

hand in the right graph G−, D(G−) = 5 and comes from the sequence S, A, B, C and

D.

retains its definition in (3.6). Note ∆i(t) = d̂i(t)− di where di are the distances in G.

We summarize the underlying assumptions.

Assumption 2. Both the graphs G and G− defined in Definition 3.3 obey Assumption

1. The set of neighbors of node i, is time invariant for all i ∈ V as is the source set.

None of the source nodes move. The edge length of each pair of nodes i and j is given

by (3.38) under (3.39) and (2.8). Although (3.40) applies, eij = eji still holds. Also

assume that t0 = 0.

Note t0 = 0 is without loss of generality because of the fact that its uniform
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asymptotic stability, guarantees that the behavior of (2.13) is independent of t0.

Despite the topological similarity of the graphs G− and G, their respective effective

diameters D(G−) and D(G), defined in Definition 3.1, may differ. This is so as the

true constraining nodes in the graphs may be different, as is illustrated by the two

graphs in Figure 3.4. In G the true constraining node of D is E while in G−, it is C.

Further D(G) = 4 < D(G−) = 5. Lemma 3.2.12 shows that

D(G−) ≥ D(G). (3.43)

The next lemma proves the ultimate boundedness of ∆+(t).

Lemma 3.2.10. Consider (3.41), under Assumption 2. Then ∆+(t) ≤ (D(G)− 1)ε

for all t ≥ D(G)− 1, where D(G) is as in Definition 3.1 and ∆+(t) is as in (3.4).

Proof. Consider the sequence n1, n2, ..., nT in the proof of Theorem 3.2.5 where the

true constraining nodes are for the graph G. As T ≤ D(G), the result holds if

d̂ni
(t) ≤ dni

+ (i− 1)ε, ∀ i ∈ {1, · · · , T} and t ≥ i− 1. (3.44)

We prove (3.44) by induction. It is true for i = 1 from (3.41) as n1 ∈ S. Thus

suppose it holds for some i ∈ {1, · · · , T − 1}. Then from (3.41), (3.38), (3.39), and
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the definition of a true constraining node we have for all t ≥ i− 1

d̂ni+1
(t+ 1) ≤ d̂ni

(t) + ēni+1ni
(t)

≤ dni
+ (i− 1)ε+ eni+1ni

+ εni+1ni
(t)

= dni+1
+ (i− 1)ε+ εni+1ni

(t)

≤ dni+1
+ (i− 1)ε+ ε

= dni+1
+ iε.

Thus (3.44) and hence the result follows.

To address ∆−(t) we take an approach like the comparison principle [45], the

following lemma establishes a connection between distance estimates in G and those

in its shrunken version, G−, defined in Definition 3.3.

Lemma 3.2.11. Suppose Assumption 2 holds. Consider

D̂i(t+ 1) =

{
minj∈N (i)

{
D̂j(t) + eij − ε

}
i /∈ S

0 i ∈ S
, (3.45)

and (3.41). Suppose for all i ∈ V , D̂i(0) ≥ d̂i(0). Then d̂i(t) ≥ D̂i(t), ∀t ≥ 0 and for

all i ∈ V .

Proof. We prove by induction. As the result holds for t = 0, suppose for some t ≥ 0,

d̂i(t) ≥ D̂i(t), ∀i ∈ V. Suppose j ∈ N (i) is a current constraining node of i at time t

in (3.41) while k ∈ N (i) is a current constraining node of i at time t in (3.45). Then
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from (3.38) and (3.39), there obtains:

D̂i(t+ 1) = D̂k(t) + eik − ε

≤ D̂j(t) + eij − ε

≤ d̂j(t) + eij − ε

≤ d̂j(t) + eij + εij(t)

= d̂i(t+ 1). (3.46)

Thus the estimates offered by (3.41) are uniformly lower bounded by the es-

timates, D̂i(t), from the identically initialized Adaptive Bellman-Ford algorithm ap-

plied to the graph G−. As G− satisfies the same assumptions as G, and is perturbation

free, the greatest underestimation error it offers converges to zero. To establish an

ultimate bound on ∆− it thus suffices to relate distances Di in G−, to distances di in

G. The next lemma does just that.

Lemma 3.2.12. Suppose Assumption 2 holds. Then for all i ∈ V ,

di ≤ Di + (D(G−)− 1)ε, (3.47)

where G− is in Definition 3.3 and D(.) is in Definition 3.1. Further, (3.43) holds.

Proof. Consider nodes n1, · · · , nT1 , such that n1 ∈ S, and for all i ∈ {1, · · · , T1 − 1}

ni is a true constraining node of ni+1 in G−. Every node is in one such sequence. We

assert that for all i ∈ {1, · · · , T1},

dni
≤ Dni

+ (i− 1)ε. (3.48)
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As n1 ∈ S the result holds for i = 1. Now suppose it holds for some i ∈ {1, · · · , T1−1}.

As ni and ni+1 are neighbors in both G and G−, ni is the true constraining node of

ni+1 in G−, and (3.42) holds, (3.48) holds as

dni+1
≤ dni

+ enini+1

≤ Dni
+ (i− 1)ε+ enini+1

= Dni
+ (i− 1)ε+ e−nini+1

+ ε

= Dni+1
+ iε.

Then (3.47) follows as from Lemma 3.2.1, T1 ≤ D(G−).

To prove (3.43) suppose D(G) > D(G−). Then there is a sequence of nodes in

G, without loss of generality {1, · · · , n}, such that 1 ∈ S and for all i ∈ {1, · · · , n}, i

is a true constraining node of i+ 1. Further

dn =
n−1∑
i=1

ei,i+1. (3.49)

As D(G) > D(G−), there is a sequence of nodes {p1, · · · , pl, n} such that in G−,

p1 ∈ S and pi is a true constraining node of pi+1, pl is a true constraining node of n

and l + 1 < n. Further

Dn =
l−1∑
i=1

(
epi,pi+1

− ε
)

+ epl,n − ε. (3.50)

By definition the distance from S along the path comprising {1, · · · , n} in G− is less

than Dn, i.e.

l−1∑
i=1

(
epi,pi+1

− ε
)

+ epl,n − ε <
n−1∑
i=1

(ei,i+1 − ε)

⇒
l−1∑
i=1

epi,pi+1
+ epl,n <

n−1∑
i=1

ei,i+1,
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where the last inequality follows from the fact that l + 1 < n, and violates (3.49).

The contradiction proves (3.43).

We now prove the ultimate boundedness of ∆−.

Lemma 3.2.13. Consider (3.41) under Assumption 2. Then with D(G−), emin,

dmax(G−) and d̂min defined in Definition 3.1, (2.8), Theorem 3.2.9 and Lemma 3.2.7

respectively, for all

t ≥ T =
dmax(G−)− d̂min(0)

emin − ε
, (3.51)

∆−(t) ≤ (D(G−)− 1)ε. (3.52)

Proof. Consider the algorithm in (3.45) with the initialization in Lemma 3.2.11. As

G− satisfies Assumption 1, D̂i(t) converges to Di (see Definition 3.3) in a finite time

T1. Thus from Lemma 3.2.11, for all t ≥ T1 and i ∈ V , d̂i(t) ≥ Di. Thus the upper

bound in (3.52) follows from Lemma 3.2.12 and

−∆i(t) ≤ di −Di

≤ Di + (D(G−)− 1)ε−Di

= (D(G−)− 1)ε,

Time to attain (3.52) is that for the greatest underestimate in (3.45) to go to zero.

This is at most T in (3.51) from the following: (i) Theorem 3.2.9. (ii) The minimum

initial estimate in (3.45) is d̂min(0). (iii) The shortest link in G− is at least emin−ε.

Note dmax(G−) can range from dmax(G)−ε, e.g. when the node with the largest

distance has a source as its true constraining node, to dmax(G)−D(G−)ε.
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Figure 3.5: Illustration of the tightness of convergence time with perturbations (figure

from [58]).

Theorem 3.2.14. Consider (3.41), the conditions of Lemma 3.2.13 and Lemma

3.2.10. With T as in (3.54), L(t) in (3.6) obeys

L(t) ≤
(
D(G) +D(G−)− 2

)
ε, ∀t ≥ T. (3.53)

T = max

{
D(G)− 1,

dmax(G−)− d̂min(0)

emin − ε

}
. (3.54)

Further, for every n = |V | > 3, there exists a graph and perturbations conforming to

Assumption 2 for which the bound in (3.53) is attained in precisely T iterations.

Proof. Ultimate boundedness follows from Lemma 3.2.13 and Lemma 3.2.10. Con-

sider a perturbed version of the nominal graph G in Figure 3.2 given in Figure 3.5.

The perturbation obeys Assumption 2 and the perturbed graph itself obeys Assump-

tion 1. Since the perturbed graph has fixed edges its distance estimates will converge
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to the correct values. In particular d̂n will converge to dn + nε and d̂2n to d2n − nε.

It is readily checked that these are in fact the greatest over and underestimates re-

spectively. Thus, as D(G) = D(G−) = n + 1, (3.53) is precisely met. Suppose now

d̂i(0) > i(e+ ε) for all i ∈ {1, · · · , n}, and d̂i(0) = 0 for all i ∈ {n+ 1, · · · , 3n}, then

the arguments given in the proof of Theorem 3.2.9 establish that convergence of d̂n

and d̂2n occur precisely by the first and second terms on the right side of (3.54).

Though tight, these bounds are conservative as can be seen from the simula-

tions results in Section 3.2.4.

3.2.4 Simulations

In this section, we empirically confirm the results presented in the prior sec-

tions through simulations under two classes of persistent perturbations: device move-

ment and periodic changes of source location to induce large perturbations. Unless

otherwise noted, all use 500 nodes, one of which is a source, distributed randomly

in a 4x1 km2 field, communicating over a 0.25 km radius, and run synchronously for

2000 simulated 1-second rounds, with d̂i(0) ∈ U(0, 4.12) km. As under perturbations,

(2.12) will not be sustained, the classical Bellman-Ford algorithm cannot cope with

them.

We first investigate the performance of ABF under device movement. At

each t a node is perturbed from its nominal location by [r cos θ, r sin θ]T with r ∼

U(0, 0.5emin), emin = 0.0048, and θ ∼ U(0, 2π). Thus ε = emin in (3.38). Note (3.38)

and (3.40) are satisfied with probability 1. The results are in Figure 3.6.
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Figure 3.6: Comparison between (a) the greatest overestimate ∆+(t) and (D(G)−1)ε,

and (b) comparison between the least underestimate ∆−(t) and (D(G−)− 1)ε (b), as

well as their partial enlarged views (c) and (d). In this example, each node is moving

within a circle with a radius of 0.5emin (plot from [58]).
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Lemma 3.2.10 and Lemma 3.2.13, predict ultimate bounds for ∆+ and ∆− of

(D(G) − 1)ε and (D(G−) − 1)ε, respectively. In Figure 3.6(a) ∆+(t) goes lower than

(D(G)− 1)ε after 3 rounds, D(G) = 17. On the other hand, Figure 3.6(b) shows that

∆−(t) is still constrained by the “rising value problem” and needs a much longer time

than ∆+(t) to drop below (D(G−)− 1)ε.

Figure 3.6(c) and (d) depict snapshots well beyond the time after the ultimate

bounds are attained. Unsurprisingly, due to the worst case nature of the Lyapunov

based analysis, which is inherently conservative, there is a significant gap between

∆+(t), ∆−(t) and their corresponding ultimate upper bounds.

We next simulate large errors by periodic change of the source set in addition

to device movements. The graph periodically alternates between two sources nodes

at [3.75, 0.5] and [0.25, 0.5]. The remaining 498 nodes are randomly distributed in

a 4x1 km field. At each transition the old source inherits a distance estimate of zero

and other nodes acquire a large estimation error. The non-source nodes still move

around their nominal values, in a disk with radius in U(0, 0.5emin), emin = 0.0044

and ε = emin. To mimic frequent changes, we alternate the sources every 50 seconds

while the simulation runs for 2000 iterations. The results in Figure 3.7 show that due

to the fast convergence rate, ∆+(t) will drop below its ultimate upper bound, then

bounce back up again when the source changes. The two different “spike” patterns

of ∆+ result from the alternation of the two source nodes. On the other hand, due to

its slow convergence rate, ∆−(t) in this case never attains its ultimate bound. Yet,

even if errors are not small due to the frequent change of source nodes, the algorithm
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Figure 3.7: Comparison between (a) the greatest overestimate ∆+(t), (D(G)−1)ε and

the theoretical bound of ∆+(t) for unperturbed system, and (b) comparison between

the least underestimate ∆−(t), (D(G−)− 1)ε and the theoretical bound of ∆−(t) for

unperturbed system. In this example, there are two source nodes in the graph, one is

at [3.75, 0.5] and the other is at [0.25, 0.5], switching between source nodes every 50

simulated seconds while all nodes are moving within a circle with a radius of 0.5emin

(plot from [58]).
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Figure 3.8: Comparison between (a) the greatest overestimate ∆+(t), (D(G)−1)ε and

the theoretical bound of ∆+(t) for unperturbed system, and (b) comparison between

the least underestimate ∆−(t), (D(G−)− 1)ε and the theoretical bound of ∆−(t) for

unperturbed system. In this example, there are two source nodes in the graph, one

is at [3.75, 0.5] and the other is at [0.25, 0.5], switching between source nodes every

1000 simulated seconds while all nodes are moving within a circle with a radius of

0.5emin (plot from [58]).
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reduces them from the large values they acquire at source transitions. Under less

frequent changes ∆−(t) converges as well, e.g. in Figure 3.8, where the sources switch

every 1000 seconds.

3.3 GUES and robustness of MPP

In this section, we prove the robust stability of MPP introduced in Section 2.5,

which is a variant of the shortest path problem that is used to find a path between

two nodes in a graph such that the multiplication of edge weights is maximized.

Similar problems have been studied in [44, 21, 64]. However, these works either

involve a computationally expensive operation log or lacks the proof of the time to

convergence and robustness under perturbations. In this section, GUES of MPP is

proved by using the same Lyapunov function as in ABF. Our analysis shows that

MPP is also ultimately bounded under certain persistent perturbations , and the

time to convergence, the ultimate bounds, as well as the time to attain those bounds

are tight [28]. The following assumption is needed for our proof.

Assumption 3. The graph G = (V,E) is connected, undirected, S 6= V , with eij

obeying (2.19) and the true failure rate of delivery pi of node i from the source set

obeying (2.21). Further, the initial time is t0, and ∀i ∈ V \ S, p̂i(t0) ∈ [0, 1).

With Assumption 3, the following holds.

Remark. Suppose Assumption 3 holds. Then for all i ∈ V and all t, 0 ≤ p̂i(t) < 1.

3.3.1 A Lyapunov function

Consider (2.20), the constraining node is defined as the following.
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Definition 3.4. The minimizing j in the first bullet of (2.20) used to find p̂i(t+ 1),

is i’s current constraining node at t+ 1.

Similarly, for pi the true failure rate of delivery defined in (2.21), the concept

of true constraining node is introduced.

Definition 3.5. A minimizing j in the first bullet of (2.21) used to find pi, is i’s true

constraining node. As a node may have multiple true constraining nodes, the set of

true constraining nodes of a node i ∈ V \ S is defined as C(i).

Define ∆i(t) as the probability estimation error of node i, and it obeys

∆i(t) = p̂i(t)− pi. (3.55)

Further, define the greatest overestimate of the error ∆+(t) and the least underesti-

mate of the error ∆−(t) below,

∆+(t) = max
[
0,max

i
∆i(t)

]
(3.56)

∆−(t) = max
[
0,−min

i
∆i(t)

]
, (3.57)

and their sum forms our Lyapunov function:

L(t) = ∆+(t) + ∆−(t). (3.58)

L(t) ≥ 0 as ∆+(t) ≥ 0 and ∆−(t) ≥ 0, and the equality holds iff for all i ∈ V ,

∆i(t) = 0. Indeed, the Lyapunov function we formulate here for MPP is the same as

for ABF, and it can readily be verified that L(t) acts as a valid norm for a vector of

the probability estimation errors.
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In order to prove that L(t) is also decreasing, we define K+(t) as a set com-

prising all nodes whose error equals ∆+(t).

K+(t) =
{
i ∈ V |∆i(t) = ∆+(t)

}
. (3.59)

Similarly,

K−(t) =
{
i ∈ V |∆i(t) = −∆−(t)

}
. (3.60)

The following lemma shows that ∆+(t) decreases exponentially if ∆+(t) 6= 0.

Lemma 3.3.1. Consider (2.20) under Assumption 3. With ∆+ and emax defined in

(3.56) and (2.19), for all t,

∆+(t+ 1) ≤ emax∆+(t). (3.61)

Proof. Consider l ∈ K+(t+ 1). Suppose any neighbor j ∈ N (l) is a true constraining

node of l, i.e. from (2.21) and Definition 3.5,

pl = 1− (1− pj)elj. (3.62)

Then from (3.8),

∆+(t+ 1) = ∆l(t+ 1)

= p̂l(t+ 1)− pl

≤ 1− (1− p̂j(t))elj − pl (3.63)

= 1− (1− p̂j(t))elj − (1− (1− pj)elj)

= (p̂j(t)− pj)elj

= elj∆j(t)

≤ emax∆+(t), (3.64)
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where (3.63) uses (2.20), (3.64) uses (2.19) and (3.56).

Similarly, for ∆−(t), we have the following lemma.

Lemma 3.3.2. Consider (2.20) under Assumption 3. With ∆− and emax defined in

(3.57) and (2.19), for all t,

∆−(t+ 1) ≤ emax∆−(t). (3.65)

Proof. Consider l ∈ K−(t+ 1). Suppose j is the constraining node of l at time t+ 1,

then

∆−(t+ 1) = pl − p̂l(t+ 1)

≤ 1− (1− pj)elj − p̂l(t+ 1)

= 1− (1− pj)elj − (1− (1− p̂j(t))elj) (3.66)

= (pj − p̂j(t))elj

= −elj∆j(t)

= emax∆−(t), (3.67)

where (3.66) uses (2.21) and (3.67) uses (2.19) and (3.57).

With Lemma 3.3.1 and 3.3.2, Theorem 3.3.3 proves that MPP is GUES and

p̂i = pi for all i ∈ V is the only stationary point of (2.20).

Theorem 3.3.3. Under conditions of Lemma 3.3.1 and Lemma 3.3.2. With L(t)

and emax defined in (3.58) and (2.19), one obtains,

L(t+ 1) ≤ emaxL(t), ∀t ≥ t0, (3.68)
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(2.20) is GUES and p̂i = pi, ∀i ∈ V is the only stationary point of (2.20).

Proof. This is a a direct consequence of Lemma 3.3.1 and Lemma 3.3.2, and the fact

that 0 < emax < 1.

3.3.2 Tight bound on time to convergence

In this section, we tightly bound the convergence time of MPP. To address

this, we derive the convergence time of the greatest overestimate ∆+(t) and the least

underestimate ∆−(t), respectively.

We first introduce the following definition which associates with the conver-

gence time of ∆+(t).

Definition 3.6. For a connected graph G,consider any sequence of nodes such that

the predecessor of each node is one of its true constraining nodes. Define D(G), the

effective diameter of G, as the longest length such a sequence can have in G (i.e., the

diameter of the shortest path forest rooted at S).

The proof showing that D(G) is finite is similar as in [58] and thus omitted.

With Definition 3.6, the following theorem shows that the overestimate will vanish to

zero within at most D(G)− 1 steps.

Theorem 3.3.4. Under Assumption 3, ∆+(t) defined in (3.56) obeys

∆+(t) = 0, ∀ t ≥ t0 +D(G)− 1. (3.69)

Proof. As G is connected, each node belongs to a sequence of nodes n1, n2, · · · , nT ,

such that ni is the true constraining node of ni+1 and n1 ∈ S. From Definition 3.6,
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T ≤ D(G). We now assert and prove by induction that,

∆ni
(t) ≤ 0, ∀ t ≥ i− 1 + t0, and i ≤ T. (3.70)

Then the result is proved from (3.56). As n1 ∈ S, (3.70) holds from (2.20). Now

suppose it holds for some i ∈ {0, · · · , T − 1}. As ni ∈ C(ni+1) ⊂ N (ni+1), from

(2.20), (2.21) and the induction hypothesis, for all t ≥ i+ 1 + t0,

p̂ni+1
(t) ≤ 1− (1− p̂ni

(t− 1))enini+1

≤ 1− (1− pni
)enini+1

= pni+1
(3.71)

where (3.71) uses (2.21). Thus (3.70) and (3.69) hold.

While for ABF, we lower bound the decline in ∆−(t) in order to find its

convergence time. In MPP, lower bounding the decline ratio makes more sense.

Lemma 3.3.5. Under the conditions of lemmas 3.3.1 and 3.3.2 define,

S−(t) = {i ∈ V |∆i(t) < 0} , (3.72)

and

p̂min(t) = min
i∈S−(t)

{p̂i(t)}. (3.73)

Then with emax defined in (2.19), the following holds unless S−(t) is empty:

1− p̂min(t+ 1) ≤ emax(1− p̂min(t)) (3.74)

Proof. Suppose S−(t + 1) is not empty. Then from Lemma 3.3.2, and (3.60), S−(t)

cannot be empty. Consider any i ∈ S−(t+1) and suppose j is its current constraining
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node at t. Then we assert that j ∈ S−(t). Indeed assume j /∈ S−(t). Thus p̂j(t) ≥ pj.

As j ∈ N (i), from Definition 3.5 and (2.21),

p̂i(t+ 1) = 1− (1− p̂j(t))eij

≥ 1− (1− pj)eij

≥ pi.

Thus i /∈ S−(t + 1), leading to a contradiction, and hence j ∈ S−(t). Then from

(2.19), (3.72) and (3.73), there holds:

1− p̂i(t+ 1) = 1− p̂min(t+ 1)

= (1− p̂j(t))eij

≤ (1− p̂min(t))eij

≤ (1− p̂min(t))emax

From Remark 3.3, 0 ≤ p̂i(t) < 1 for i ∈ V and all t. Thus, Lemma 3.3.5

indicates that p̂min(t) strictly increases unless S−(t) is empty. With Theorem 3.3.4

and Lemma 3.3.5, we now tightly bound the time to convergence in the following

theorem.

Theorem 3.3.6. Under conditions of Lemma 3.3.1 and Lemma 3.3.2. Consider

(2.20), D(G) defined in Definition (3.6) and emax defined in (2.19). Define

pmax(G) = max
i∈V
{pi}, (3.75)
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Figure 3.9: Illustration of the tightness of convergence time. The entire graph is used

in the proof of Theorem 3.3.6.

for G = (V,E). Then L(t) = 0,∀t ≥ t0 + T with T obeying

T = max

{
D(G)− 1,

⌈
logemax

(1− pmax(G)

1− p̂min(t0)

)⌉}
(3.76)

Further, for every n = |V | > 3, there exists a G satisfying Assumption 3 for which

L(t) > 0 for all t < T .

Proof. From Theorem 3.3.4, ∆+(t) vanished to 0 within D(G)−1 steps, this accounts

for the D(G)− 1 in (3.76). For ∆−(t), from Lemma 3.3.5, ∆−(t) = 0 whenever

t− t0 ≥ T− =

⌈
logemax

(1− pmax(G)

1− p̂min(t0)

)⌉
. (3.77)

To prove that (3.76) is a tight bound for convergence time, consider the graph in

Figure 3.2 with emax > e and log e is a multiple of log emax. Assume for all i ∈
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{1, · · · , n}, p̂i(t0) > pmax(G), and p̂n+i(t0) = p̂2n+i(t0) = 0. Then from Theorem 3.3.4,

it takes exactly D(G)− 1 iterations for ∆+(t) to converge,

For ∆−(t), w.l.o.g., suppose t0 = 0, and⌈
log e

log emax

⌉
=

log e

log emax

= m. (3.78)

Then we assert that for all i ∈ {1, · · · , n},

1− p̂n+i(t) = 1− p̂2n+i(t) =


etmax i ∈ {b t

m
c+ 1, · · · , n}

pn+i otherwsie

. (3.79)

Here we call each pair n+ i and 2n+ i partners. Clearly, the true probability for node

n+ i and 2n+ i is 1−ei. For t ∈ {1, · · · ,m−1}, as emax > e and p̂n+i(0) = p̂2n+i = 0,

partner nodes will constrain each other until t = m when emmax = e, leading to

p̂n+1(m) = p̂2n+1(m) = pn+1 = p2n+1 = 1 − e. Notice that p̂n+i(t) ≥ 1 − e and

p̂2n+i(t) ≥ 1− e for t ≥ m, and hence n+ 1 and n+ 2 are constrained by the source

for t ≥ m, establishing p̂n+1(t) = p̂2n+1(t) = pn+1 = p2n+1 for t ≥ m. Continuing this

argument (3.79), there holds:

p̂2n(t) = p̂3n(t) < 1− en = p2n = p3n,∀t < mn. (3.80)

Our result follows as

mn = n
log e

log emax

= n

⌈
log e

log emax

⌉
=

⌈
logemax

en
⌉

=

⌈
logemax

(1− pmax(G)

1− p̂min(t0)

)⌉
(3.81)
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where (3.81) uses pmax(G) = 1− en and p̂min(t0) = 0.

3.3.3 Robustness under perturbations

In this section, we analyze the robustness of MPP under persistent perturba-

tions on edges values, and demonstrate ultimate boundedness of probability estimates

around the nominal values. Here we assume a node receives noisy probability esti-

mate of its neighbors, and the noise is reflected in the value of edges, i.e., edge values,

which represent success rate of delivery, change from their nominal values eij as

ēij(t) = eij + εij(t). (3.82)

Such noise is assumed to be bounded and small, i.e., there exists an ε such that with

emin and emax defined in (2.19),

|εij(t)| < ε < min{emin, 1− emax}. (3.83)

(3.83) ensures that edge value is still in (0, 1). Moreover, as the noise seen by node i

differs from that seen by node j, we assume the noise is asymmetric,

ēij(t) 6= ēji(t). (3.84)

Thus, (2.20) under perturbations should be interpreted as:

p̂i(t+ 1) =


min
j∈N (i)

{1− (1− p̂j(t)) · ēij(t)} i /∈ S

0 i ∈ S

(3.85)

We begin with the ultimate boundedness of ∆+(t). We first introduce the following

definition.
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Definition 3.7. Consider G = (V,E), we call a path from a node i to the source

set a most probable path, if it starts at i, ends with a source node and each node

in the path is a true constraining node of its predecessor. We call a most probable

path from i, the longest most probable path if it has the most nodes among all most

probable paths of i. The set Fi is the set of nodes whose longest most probable paths

to the source have i+ 1 nodes.

Thus if a node i has two most probable paths one having two and the other

three nodes then i /∈ F1 but i ∈ F2. From Definition 3.6, Fi follows

F0 = S. Fi 6= ∅, i ∈ {0, 1, · · · ,D(G)− 1}, (3.86)

and each node in Fi+1 has a true constraining node in Fi:

C(j) ∩ Fi 6= ∅, ∀j ∈ Fi+1. (3.87)

We define the smallest true failure rate of delivery in Fi as

pimin = min
j∈Fi

{pj}. (3.88)

Observe that p0 min = 0 as F0 = S. Then the following lemma proves the ultimate

boundedness of ∆+(t).

Lemma 3.3.7. Consider (3.85). Then ∆+(t) ≤ ε
∑D(G)−2

i=0 (1−pimin)(emax−ε)D(G)−2−i

for all t ≥ D(G) − 1 with D(G), ∆+(t), pimin, emax and ε defined in Definition 3.6,

(3.56), (3.88), (2.19) and (3.83) respectively.

Proof. Consider the sequence of nodes n1, n2, · · · , nT in the proof of Theorem 3.3.4.

It follows that T ≤ D(G) and p̂n1(t) = pn1 = 0 for all t in (3.85). The result holds if
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for t ≥ i− 1,

p̂ni
(t) ≤ pni

+ ε
i−2∑
l=0

(1− plmin)(emax − ε)i−2−l,∀i ∈ {2, · · · , T}. (3.89)

We prove (3.89) by induction. For i = 2 and t ≥ 1, from (3.85), there holds:

p̂n2(t) ≤ 1− (1− p̂n1(t− 1))en2n1(t− 1)

= 1− (1− pn1)en2n1(t− 1) (3.90)

≤ 1− (1− pn1)(en2n1 − ε) (3.91)

≤ pn2 + (1− pn1)ε (3.92)

= pn2 + (1− p0 min)ε (3.93)

where (3.90) uses p̂n1(t) = pn1 = 0 for all t, (3.91) uses (3.83), (3.92) uses (2.21), and

(3.93) uses (3.88).

Now suppose (3.89) holds for some i ∈ {2, · · · , T − 1}. From (2.21), (3.83)
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and our induction hypothesis, for all t ≥ i, p̂ni+1
(t) obeys

p̂ni+1
(t)

≤1− (1− p̂ni
(t− 1))eni+1ni

(t− 1)

≤1− (1− pni
− ε

i−2∑
l=0

(1− plmin)(emax − ε)i−2−l)(eni+1ni
− ε)

=1− (1− pni
)eni+1ni

+ (1− pni
)ε+ (eni+1ni

− ε)ε
i−2∑
l=0

(1− plmin)(emax − ε)i−2−l

=pni+1
+ (1− pni

)ε+ (eni+1ni
− ε)ε

i−2∑
l=0

(1− plmin)(emax − ε)i−2−l

≤pni+1
+ (1− pi−1 min)ε+ (emax − ε)ε

i−2∑
l=0

(1− plmin)(emax − ε)i−2−l

=pni+1
+ ε

i−1∑
l=0

(1− plmin)(emax − ε)i−1−l

In order to address the ultimate boundedness of ∆−(t), we utilize an approach

like the comparison principle [45]. Instead of utilizing a shrunken verision of graph

as we did for ABF [58]. Here, for a graph G = (V,E), we define its extended version,

G+ = (V,E+) in the following definition.

Definition 3.8. Given G = (V,E), the undirected graph G+ = (V,E+), has the

property that edge (i, j) ∈ E+ iff (i, j) ∈ E. The edge value e+
ij between nodes i and

j obeys

e+
ij = eij + ε, (3.94)

with ε defined in (3.83). Further G+ has the same source set S as G, each i has the

same set of neighbors as in G, and Pi is the true failure rate of delivery between i and
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the nearest source node, i.e. plays the role of pi in G. Further, we define D(G+) as

the effective diameter of G+, and F+
i the set of nodes whose longest most probable

paths defined in Definition 3.7 to the source have i+ 1 nodes in G+.

Similarly, for G+, we define the smallest true failure rate of delivery in F+
i as

p+
imin = min

j∈F+
i

{Pj}, (3.95)

It holds that p+
0 min = 0 as F+

0 = S.

We summarize the following assumptions for G and G+.

Assumption 4. Both the graphs G and G+ defined in Definition 3.8 obey Assumption

3. The set of neighbors of node i, is time invariant for all i ∈ V as is the source set.

None of the source nodes move. The edge value of each pair of nodes i and j is given

by (3.82) under (3.83) and (2.19). Although (3.84) holds, eij = eji still holds. We

also assume t0 = 0 is the initial time.

Under Assumption 4, define P̂i(t) as the estimated failure rate of delivery for

i ∈ V in G+, when G+ is perturbations free, P̂i(t) obeys

P̂i(t+ 1) =


min
j∈N (i)

{1− (1− P̂j(t)) · (eij + ε)} i /∈ S

0 i ∈ S

(3.96)

The following lemma establishes a connection between probability estimates in G and

those in its extended version, G+, defined in Definition 3.8.

Lemma 3.3.8. Suppose Assumption 4 holds. Consider P̂i(t) defined in (3.96) and

p̂i(t) defined in (3.85). Suppose for all i ∈ V , P̂i(0) ≥ p̂i(0). Then p̂i(t) ≥ P̂i(t)

∀t ≥ 0 and for all i ∈ V .
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Proof. We prove by induction. The result holds for t = 0. Suppose for some t ≥ 0,

p̂i(t) ≥ P̂i(t) for all i ∈ V . Suppose j ∈ N (i) is a current constraining node of i at

time t + 1 in (3.85) while k ∈ N (i) is a current constraining node of i at time t + 1

in (3.96). Then there holds:

P̂i(t+ 1) = 1− (1− P̂k(t))(eik + ε)

≤ 1− (1− P̂j(t))(eij + ε) (3.97)

≤ 1− (1− p̂j(t))(eij + ε) (3.98)

≤ 1− (1− p̂j(t))eij(t) (3.99)

= p̂i(t+ 1) (3.100)

where (3.97) uses (3.96), (3.98) uses the induction hypothesis that p̂i(t) ≥ P̂i(t) for

all i ∈ V , and (3.99) uses (3.83).

Thus, for all i ∈ V , the probability estimates p̂i(t) in (3.85) are uniformly

lower bounded by P̂i(t) in (3.96) if initial condition obeys P̂i(0) ≥ p̂i(0). Further, as

G+ satisfies the same assumptions as G, and is perturbations free, both ∆+(t) and

∆−(t) of (3.96) converge to zero. To establish an ultimate bound on ∆− in (3.85),

we need to relate the true probability Pi in G+ to pi in G, and this is stated in the

following theorem.

Lemma 3.3.9. Suppose Assumption 4 holds. Then for all i ∈ V ,

pi ≤ Pi + ε

D(G+)−2∑
l=0

(1− p+
lmin)eD(G+)−2−l

max . (3.101)

with emax, D(G+) and p+
lmin defined in (2.19), Definition 3.8 and (3.95), respectively.
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Proof. Consider a sequence of nodes n1, n2, · · · , nT1 , such that n1 ∈ S, and for all

i ∈ {1, · · · , T1 − 1}, ni is a true constraining node of ni+1 in G+. Every node in G+

is in one such sequence, and T1 ≤ D(G+). As pn1 = Pn1 = 0, (3.101) holds for i ∈ S.

Then the result holds if for all i ∈ {2, · · · , T1},

pni
≤ Pni

+ ε
i−2∑
l=0

(1− p+
lmin)ei−2−l

max . (3.102)

For i = 2, pn2 obeys

pn2 ≤ 1− (1− pn1)en2n1 (3.103)

= 1− (1− Pn1)en2n1 (3.104)

= 1− (1− Pn1)(en2n1 + ε) + (1− Pn1)ε

= Pn2 + (1− Pn1)ε (3.105)

= Pn2 + (1− p+
0 min)ε (3.106)

where (3.103) uses (2.21), (3.104) uses pn1 = Pn1 = 0, (3.105) uses that n1 is a true

constraining node of n2 in G+, and (3.106) uses (3.95). Thus, (3.102) holds for i = 2.

Now suppose (3.102) holds for some i ∈ {2, · · · , T1 − 1}. As ni and ni+1 are

neighbors in both G and G+, ni is a true constraining node of ni+1 in G+ and (3.83)
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holds, pni+1
obeys

pni+1
≤ 1− (1− pni

)eni+1ni

≤1− (1− Pni
− ε

i−2∑
l=0

(1− p+
lmin)ei−2−l

max )eni+1ni

=1− (1− Pni
− ε

i−2∑
l=0

(1− p+
lmin)ei−2−l

max )(eni+1ni
+ ε) + (1− Pni

− ε
i−2∑
l=0

(1− p+
lmin)ei−2−l

max )ε

=1− (1− Pni
)(eni+1ni

+ ε) + (1− Pni
)ε+ ε

i−2∑
l=0

(1− p+
lmin)ei−2−l

max eni+1ni

≤Pni+1
+ (1− p+

i−1 min)ε+ emaxε
i−2∑
l=0

(1− p+
lmin)ei−2−l

max

=Pni+1
+ ε

i−1∑
l=0

(1− p+
lmin)ei−1−l

max

With Lemma 3.3.8 and Lemma 3.3.9, we now prove the ultimate boundedness

of ∆−.

Lemma 3.3.10. Considering (3.85) under Assumption 4. With D(G+), emax, emin,

pmax(G+) and p̂min defined in Definition 3.8, (2.19), Theorem 3.3.6 and Lemma 3.3.5

respectively, for all

t ≥ T1 =

⌈
logemax+ε

(1− pmax(G+)

1− p̂min(t0)

)⌉
, (3.107)

there holds:

∆−(t) ≤ ε

D(G+)−2∑
l=0

(1− p+
lmin)eD(G+)−2−l

max . (3.108)

Proof. Consider (3.96) in G+ with the initialization in Lemma 3.3.8. As G+ satisfies

Assumption 3, P̂i(t) for all i ∈ V converge to Pi within a finite time T1. Thus from
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Lemma 3.3.8, p̂i(t) ≥ Pi for all t ≥ T1 and i ∈ V . With Lemma 3.3.9, for t ≥ T1,

there holds:

−∆i(t) ≤ pi − Pi

≤ Pi + ε

D(G+)−2∑
l=0

(1− p+
lmin)ei−2−l

max − Pi

= ε

D(G+)−2∑
l=0

(1− p+
lmin)ei−2−l

max .

From Theorem 3.3.6, T1 is the time when ∆−(t) of (3.96) goes to zero. With Lemma

3.3.5 and Theorem 3.3.6, T1 obeys (3.107).

The following theorem provides a tight bound on the ultimate bound and the

time to attain it.
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Figure 3.10: Illustration of the tightness of convergence time with perturbations
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Theorem 3.3.11. Consider (3.85), the conditions of Lemma 3.3.7 and Lemma 3.3.10.

L(t) in (3.58) obeys

L(t) ≤ ε

D(G)−2∑
i=0

(1− pimin)(emax − ε)D(G)−2−i +

ε

D(G+)−2∑
i=0

(1− p+
imin)eD(G+)−2−i

max ,∀t ≥ T (3.109)

with T obeying

T = max

{
D(G)− 1,

⌈
logemax+ε

(1− pmax(G+)

1− p̂min(t0)

)⌉}
(3.110)

Further, for every n = |V | > 3, there exists a graph and perturbations conforming to

Assumption 4 for which the bound in (3.109) is attained in precisely T steps.

Proof. Ultimate boundedness follows directly from Lemma 3.3.7 and Lemma 3.3.10.

For the tightness of the ultimate bound and the time to attain it. Consider the two

graphs in Figure 3.10, the right figure is the perturbed version of the left one. The

perturbation obeys Assumption 4 and the perturbed graph obeys Assumption 3. The

probability estimates in the perturbed graph will converge to the correct values as the

edge values are fixed. As e = emax in this case, pn = 1− (emax− ε)n, and p2n = p3n =

1−(emax+ε)n. It is readily checked that node n has the greatest overestimate shown in

Lemma 3.3.7, while node 2n and 3n have the greatest underestimate shown in Lemma

3.3.10, and hence (3.109) is precisely met. Further, as D(G) = D(G+) = n + 1 and

pmax(G+) = p2n = p3n, by setting p̂i(0) > pn = 1− (emax − ε)n for all i ∈ {1, · · · , n},

and p̂i(0) = 0 for all i ∈ {n+ 1, · · · , 3n}, then the time to attain the ultimate bound

of ∆+(t) is precisely the same as the first term in (3.110), and the ultimate bound of

∆−(t) occurs precisely by the second term in (3.110), which is n.
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Figure 3.11: Trace of (a) greatest overestimate ∆+(t) and (b) least underestimate

∆−(t) for 10 runs, showing that ∆+(t) will converge in D(G)− 1 rounds while ∆−(t)

takes longer to converge.

3.3.4 Simulations

In this section, we empirically confirm the previous results through simula-

tions. Our simulation is a connected graph with 500 nodes, one of which is a source,

randomly distributed in a 4× 1 km2 area, and communicate using a 0.25 km radius,

ensuring that each node has approximately 20 neighbors.

We first verify the exponential decay of ∆+(t) and ∆−(t) defined in (3.56) and

(3.57) without perturbations. The initial probability estimates and the edge values

in this case are both uniformly distributed between 0 and 1. The simulation is run

10 times.

Figure 3.11 shows the results of 10 trials, which are consistent with our analy-

sis. ∆+(t) decreases rapidly to zeros within at most 18 rounds, while D(G) is ranging

from 24 to 45 in those trials. For ∆−(t), as can be seen from (3.76) in Theorem 3.3.6,
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Figure 3.12: Trace of (a) greatest overestimate ∆+(t) and its ultimate bound, and (b)

least underestimate ∆−(t) and its ultimate bound for 5 runs, as well as their partial

enlarged views (c) and (d).
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its convergence time depends on emax, p̂min(t0) and pmax(G), and normally ∆−(t) has

slower convergence than ∆+(t).

Now we turn to the robustness of the algorithm. Here we consider static nodes

with asymmetric noise in the estimated eij, the edge values under perturbations will

change from their nominal values as shown in (3.82), and the noise εij(t) is uniformly

distributed between −min{emin, 1 − emax} and min{emin, 1 − emax}, and thus obeys

(3.83). Further, the noise is asymmetric in that εij(t) 6= εji(t). The simulation is run

for 5 times.

Simulation results are shown in Figure 3.12, ε = 5.9 × 10−3, 7.5 × 10−3, 7.9 ×

10−3, 1.05× 10−2, 5.7× 10−3 for those 5 trials. ∆+(t) for all trials becomes lower than

its predict ultimate bound after 4 rounds, while D(G) ranges from 24 to 36. Figure

3.12 (b) shows that ∆−(t) needs a longer time to drop below its ultimate bound.

This is reasonable as from (3.107) in Lemma 3.3.10, where the time for ∆−(t) to be

ultimately bounded depends on emax, p̂min(t0) and pmax(G+). Figure 3.12 (c) and (d)

are partially enlarged views of (a) and (b), as Lyapunov based analysis are based on

worst cases, there is a gap between ∆+(t), ∆−(t) and their corresponding ultimate

upper bounds.

3.4 GUAS of GABF

Though in Section 3.2 ABF has proved to be GUAS, its convergence can be

very slow in graphs will short edges if some initial estimates are smaller than their

true values. As can be seen from Lemma 3.2.6, the rising value problem may occur
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even if a pair of nodes with underestimated distance estimates do not constrain each

other. In this section, we revisit GABF introduced in Section 2.4. We prove it to

be GUAS, bounding the time to converge, and show via simulations. Moreover, the

robustness of GABF is not impaired while permitting fast convergence. Indeed, by

setting the addition parameter D defined in (2.18) over some threshold, GABF will

have the identical ultimate bounds as ABF under the same structural perturbations.

Proof for this part will be included in the robust stability proof for the generalized G

block as a byproduct in Chapter 4.

The convergence analysis of this algorithm is nontrivial as unlike ABF ∆+(t)

and ∆−(t) defined in (3.4) and (3.5) here may well intermittently increase, and is

thus not a Lyapunov function. In fact the proof of GUAS in the next section does not

use a Lyapunov function at all.

3.4.1 Preliminaries

Assumption 5 is the standing assumption in this section.

Assumption 5. Graph G is connected, S 6= ∅, S 6= V , emax ≥ eik = eki ≥ emin > 0,

D ≥ 0 and g(·) obeys (2.16).

As in any iteration the estimated distance of a node is obtained by one of the

bullets in (2.18), at each t, we partition V into two sets defined below.

Definition 3.9. The ABF set A(t) comprises all nodes that use the first case in

(2.18) to obtain d̂i(t+ 1). Define a set the set of extraordinary nodes E(t) = V \A(t)

to be those that use the second case in (2.18) to obtain d̂i(t+ 1).
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We also introduce the notion of a constraining node of i that determines d̂i(t+

1).

Definition 3.10. For i ∈ A(t), the minimizing j in (2.14) used to find d̃i(j+1), is i’s

current constraining node at t. For i ∈ E(t), i is its own current constraining node.

Sources are their own constraining nodes.

It is important to note that a source may well be in the extraordinary set E . di

the true distance in GABF is the same as in ABF, and obeys the following recursion.

di =


0, i ∈ S

min
k∈N (i)

{eik + dk} i /∈ S

(3.111)

with S the set of sources, and similarly a true constraining node is defined as

Definition 3.11. A j that minimizes the right hand side of (3.111) is a true con-

straining node of i ∈ V \ S. As a node may have multiple true constraining nodes,

the set of true constraining nodes of a node i ∈ V \ S is C(i).

Based on Definition 3.11, we introduce another.

Definition 3.12. Call a path from a node i to the source set a shortest path, if it

starts at i, ends with a source node and each node in the path is a true constraining

node of its predecessor. Call a shortest path from i, the longest shortest path if it has

the most nodes among all shortest paths of i. The set Fi is the set of nodes whose

longest shortest paths to the source have i+1 nodes. Call D(G) the effective diameter

of G if the longest shortest path among all i ∈ V has D(G) nodes.
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Thus if a node i has two shortest paths one having two and the other three

nodes then i /∈ F1 but i ∈ F2. From Definition 3.12, Fi follows

F0 = S. Fi 6= ∅, i ∈ {0, 1, ...,D(G)− 1}. (3.112)

Every node in Fi+1 has a true constraining node in Fi:

C(j)
⋂
Fi 6= ∅, ∀ j ∈ Fi+1. (3.113)

Further it has been shown in [58] that D(G) is finite.

3.4.2 Global uniform asymptotic stability

We define two sets requiring recursive definitions below.

Definition 3.13. The set of nodes R(t) rooted to S with nodes ”rooted” to the

source set obeys R(t0) = S. Further R(t + 1) comprises all nodes whose current

constraining node at t, is in R(t). We also define a set U(t) as unrooted to the source

set if U(t0) = V \S, and U(t+1) comprises all nodes whose current constraining node

at t, is in U(t).

Lemma 3.4.1 shows that U(t) and R(t), partition V.

Lemma 3.4.1. Consider (2.14), (2.16) and (2.18) under Assumption 5, with R(t)

and U(t) defined in Definition 3.13. Then for all initialization as in (2.17) and for

all t,

U(t)
⋃
R(t) = V, (3.114)

and

U(t)
⋂
R(t) = ∅. (3.115)
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Proof. First observe at each t, a node has only one current constraining node. Thus

(3.115) holds. We prove (3.114) by induction. From Definition 3.13, (3.114) holds for

t = t0. Suppose (3.114) holds for some t = t1. Consider t = t1 + 1. Every node i

has a constraining node at t1. By the inductive hypothesis this is either in R(t) or in

U(t). In the former case i ∈ R(t+ 1). In the latter case i ∈ U(t+ 1).

Observe that by definition of the unrooted set

U(t) = ∅ ⇒ U(t+ 1) = ∅. (3.116)

This is so because at t + 1 every node i has a current constraining node j. As U(t)

is empty, from Lemma 3.4.1, j ∈ R(t) and thus i ∈ R(t + 1). We further define the

following function:

d̂min(t) = min
j∈U(t)

{d̂j(t)} if U(t) 6= ∅. (3.117)

The next lemma proves that the lower bound of d̂i(t) with i ∈ U(t) strictly increases.

Lemma 3.4.2. Consider (2.14), (2.16) and (2.18) under Assumption 5, U(t) and

d̂min(t) defined in Definition 3.13 and (3.117), respectively, for all initialization as in

(2.17). The following holds while the set U(t) 6= ∅:

d̂i(t) ≥ d̂min(t0) + min{emin, δ}(t− t0), ∀i ∈ U(t). (3.118)

Proof. We prove by induction. Clearly, (3.118) holds for t = t0. Suppose (3.118)

holds for t = t1. If U(t1 + 1) is nonempty then from (3.116) so is U(t1). Suppose i is

the node with the minimmum distance estimate in U(t1 + 1), i.e

d̂i(t1 + 1) = d̂min(t1 + 1). (3.119)
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By definition, j the current constraining node of i ∈ U(t1 + 1) is in U(t1) Thus from

the induction hypothesis

d̂j(t1) ≥ d̂min(t1) ≥ d̂min(t0) + min{emin, δ}(t1 − t0) (3.120)

If i ∈ E(t1 + 1), then j = i and from (3.119) and (3.120) we have

d̂i(t1 + 1) = d̂min(t1 + 1) ≥ d̂j(t1) + δ ≥ d̂min(t1)

≥ d̂min(t0) + min{emin, δ}(t1 + 1− t0).

If i ∈ A(t1 + 1)

d̂i(t1 + 1) = d̂min(t1 + 1) = d̂j(t1) + eij

≥ d̂min(t1) + emin ≥ d̂min(t1)

≥ d̂min(t0) + min{emin, δ}(t1 + 1− t0).

The result follows.

We now show that the estimates of all nodes in R(t) are overestimates.

Lemma 3.4.3. Consider (2.14), (2.16) and (2.18) under Assumption 5, with A(t),

E(t), R(t) and di defined in Definition 3.9, 3.13 and (2.21), respectively. Then for

all initialization as in (2.17) and i ∈ R(t), d̂i(t) obeys

d̂i(t) ≥ di (3.121)

Proof. We prove by induction. As R(t0) = S and di = 0, ∀i ∈ S, under (2.17),

(3.121) holds for t = t0. Suppose (3.121) holds for t = t1. Consider i ∈ R(t1 + 1). If
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i ∈ E(t1 + 1), from (2.18), d̂i(t1 + 1) obeys

d̂i(t1 + 1) > d̂i(t1) + δ

≥ di + δ (3.122)

If i ∈ V \ E(t1 + 1) = A(t1 + 1), from (2.14), d̂i(t1 + 1) obeys

d̂i(t1 + 1) = d̂k(t1) + eik

≥ dk + eik

≥ di. (3.123)

Define:

dmax = max
k∈V
{dk} (3.124)

and

T ∗ =

⌈
dmax

min{δ, emin}

⌉
. (3.125)

Then from Lemma 3.4.2, we have that

d̂i(t) ≥ di,∀i ∈ U(t),∀t ≥ t0 + T ∗.

Thus, as U(·) and R(·) partition V , from Lemma 3.4.3,

d̂i(t) ≥ di,∀i ∈ V, ∀t ≥ t0 + T ∗. (3.126)

Thus underestimates are eliminated at T ∗. We now define the smallest distance in Fi

as

dimin = min
j∈Fi

{dj}. (3.127)
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Observe d0 min = 0 as F0 = S. Define a sequence

Ti = max

{
0,

⌈
M − dimin −D

δ

⌉}
+ 2. (3.128)

Then we have the following lemma.

Lemma 3.4.4. Consider (2.14), (2.16) and (2.18) under Assumption 5, and Fi

defined in Definition 3.12. Suppose at a time tL > T ∗ defined in (3.125) and L ∈

{0, 1, · · · ,D(G)− 2}

d̂i(t) = di, ∀i ∈
L⋃
i=0

Fi, ∀t ≥ tL, (3.129)

i.e., all distance estimates of nodes in F0, · · · ,FL have converged by tL. Then with

Ti defined in (3.128), there holds:

d̂i(t) = di, ∀i ∈
L+1⋃
i=0

Fi, ∀t ≥ tL + TL+1. (3.130)

Proof. As tL > T ∗, from (3.126), no underestimates remain at or beyond tL. Consider

i ∈ Fi+1. Suppose i ∈ E(tL+1), i.e. in the extraordinary set whose distance estimates

obey the second bullet of (2.18). As there are no underestimates, this mandates that

with dL+1,min given in (3.127), from the second bullet in (2.18) the following holds:

d̂i(tL + 1) ≥ D + di ≥ D + dL+1,min, ∀i ∈ FL+1. (3.131)

Then from (2.16) and (3.128), d̂i(ti) > M for some tL ≤ ti ≤ tL + TL+1 − 1 and

i ∈ A(ti + 1). Thus there is always a tL ≤ ti ≤ tL + TL+1 − 1 for which i ∈ A(ti + 1).

From (3.113) there is a j ∈ FL that is a true constraining node of i. From (2.14) and
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(2.18) one has for k the current constraining node of i

d̂i(ti + 1) = d̃i(ti + 1)

= d̂k(ti) + eik (3.132)

≥ dk + eik (3.133)

≥ dj + eij (3.134)

= d̂j(ti) + eij (3.135)

where (3.132) uses the definition of the current constraining node, (3.133) uses the

fact that there are no underestimates, (3.134) uses (3.111) and the fact that j is a

true constraining node of i and (3.135) uses the fact that nodes in FL have converged.

The inequalities from (3.132-3.135) show that k can be the current constraining node

of i only if equality holds in (3.133) and (3.134). Thus we have

d̂i(ti + 1) = d̃i(ti + 1) = dj + eij = di,

the last equality stemming from the fact that j is a true constraining of i. Then as

d̃i(ti + 2) = dj + eij = di = d̂i(ti + 1),

i ∈ A(ti + 2), the ABF set where estimates obey the first bullet of (2.18). A simple

induction then proves that d̂i(t) = di,∀t ≥ ti + 1.

Then the main theorem below proves GUAS and furnishes an upper bound on

the convergence time.
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Theorem 3.4.5. Consider (2.14), (2.16) and (2.18) under Assumption 5, with Ti

defined in (3.128) and T ∗ in (3.125), define

T ∗ = max{T ∗, T0}. (3.136)

Then for all initialization as in (2.17), for all i ∈ V ,

d̂i(t) = di, ∀t > t0 + T ∗ +

D(G)−1∑
i=1

Ti (3.137)

with D(G) defined in Definition 3.12.

Proof. Consider a source i ∈ E(t0). Because of (2.16) and the definition of T0 in

(3.128), d̂i(t) > M for some t ≤ t0 + T0 − 1. Thus from (2.18),

d̂i(t+ 1) = d̃i(t+ 1) = 0 = d̃i(t+ 2).

Then as in the proof of Lemma 3.4.4, distance estimates of all source nodes converge

at t = T0. Recall that t ≥ T ∗ implies that all underestimates have been removed. As

S = F0, the repeated application of Lemma 6 proves the result.

3.4.3 Simulations

In this section, we compare the relative performance of ABF and GABF. In

the simulations, 500 nodes, one of which is a source, are randomly distributed in a

4×1 km2 field, communicating over a 0.25 km radius, running synchronously. The

initial distance estimates are picked as d̂i(0) ∈ U(0,
√

17)km. Each simulation is run

10 times.

In the sequel ∆− and ∆+ are as in (3.5) and (3.4). Thus, ∆+(t) = ∆−(t) = 0

indicates convergence at time t. The simulations show that unlike ABF, ∆− and ∆+
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(a) ∆+(t)(ABF) (b) ∆−(t)(ABF)

Figure 3.13: Plot from [57] of (a) the greatest overestimate ∆+(t) and (b) the least

underestimate ∆−(t) for 10 runs without perturbations.

need not be non-increasing in GABF. Figure 3.14 concerns GABF with M = δ =

2
√

17km, D = 0, i.e. with M > dmax: ∆−(t) is rid of the “rising value problem”

and converges in 2 rounds; ∆+(t), takes slightly longer than ABF. Yet the overall

convergence is much faster than ABF as shown in Figure 3.13.

In Figure 3.15 with D = 0.06, GABF converges slower than with D = 0.

However, compared with ABF in Figure 3.13, the convergence of GABF is still much

faster.

Effect of M is demonstrated in Figure 3.16 and 3.17, In Figure 3.16, we choose

M = δ = 0.1km and D = 0, thus M is smaller than true distances of most nodes.

It shows that in this case the behavior of ∆+(t) and ∆−(t) are very close to that

in ABF. Evidently with small M , most nodes use the first bullet of (2.18) and the

rising value problem persists. Also the use of the second bullet in (2.18), may cause

∆+(t) not to converge in D(G) rounds. Figure 3.17 shows the simulation results with
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(a) ∆+(t)(GABF) (b) ∆−(t)(GABF)

Figure 3.14: Plot from [57] of (a) the greatest overestimate ∆+(t) and (b) the least

underestimate ∆−(t) for 10 runs without perturbations under M = δ = 2
√

17 and

D = 0.

(a) ∆+(t)(GABF) (b) ∆−(t)(GABF)

Figure 3.15: Plot from [57] of (a) the greatest overestimate ∆+(t) and (b) the least

underestimate ∆−(t) for 10 runs without perturbations under M = δ = 2
√

17 and

D = 0.06.
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(a) ∆+(t)(GABF) (b) ∆−(t)(GABF)

Figure 3.16: Plot from [57] of (a) the greatest overestimate ∆+(t) and (b) the least

underestimate ∆−(t) for 10 runs without perturbations under M = δ = 0.1 and

D = 0.

M = 2
√

17 km, δ = 0.1 km, D = 0. In this case, M is larger than dmax, and GABF

converges slightly faster.

For the effect of δ, we compare Figure 3.17 and Figure 3.14. In Figure 3.17,

by setting δ = 0.1, ∆+(t) needs a much longer time to converge than with a larger δ

(e.g., Figure 3.14) as estimates take longer to rise to M , which shows that a smaller

δ leads to a slower convergence.

3.5 Conclusion

In this chapter, we have presented the Lyapunov analyses of two specific G-

blocks ABF and MPP, proving their GUAS and GUES respectively. Both ABF and

MPP are ultimately bounded under bounded persistent perturbations. Moreover, the

bounds are tight so as the bound of time to attain them. We also provide a non-
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(a) ∆+(t)(GABF) (b) ∆−(t)(GABF)

Figure 3.17: Plot from [57] of (a) the greatest overestimate ∆+(t) and (b) the least

underestimate ∆−(t) for 10 runs without perturbations under M = 2
√

17, δ = 0.1

and D = 0.

Lyapunov analysis for GABF to prove its GUAS and ultimate boundedness, and this

proof gives us rich insights in proving the GUAS of the generalized G block in next

chapter.
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CHAPTER 4
GLOBAL STABILITY OF THE MOST GENERAL G BLOCK

4.1 Introduction

In this chapter, we focus on the generalized G block, which is the primitive

type of G block introduced in [71]. One distinct difference between the proof of the

generalized G block and GABF lies in that, in the generalized G block we cannot

even a priori assume the existence of a stationary point. Rather, we will first prove

the existence of the stationary point in Section 4.3. As GABF, the GUAS of the

generalized G block is proved without using a Lyapunov function in Section 4.4.

Despite this fact, in Section 4.5, with an additional Lipschitz condition on the update

kernel, we are able to establish ultimate bounds on the state error under persistent

perturbations. Section 4.6 illustrates and confirms the results with simulations, and

Section 4.7 concludes.

4.2 Preliminaries

As stated in Section 2.2, the generalized G block obeys

x̂i(t+ 1) = F (x̃i(t+ 1), x̂i(t), vi) (4.1)

with x̃i(t) and F (·, ·, v) satisfying

x̃i(t+ 1) = min

{
min
k∈N (i)

{f (x̂k(t), eik)} , si
}
,∀t ≥ t0, (4.2)
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and

F (`1, `2, v) =


`1 `2 > M or |`2 − `1| ≤ D

g(`2) otherwise

, (4.3)

respectively, and g(x) obeys g(x) ≥ x+ δ for some δ > 0.

Define S∗ as the set of nodes with finite maximum values.

S∗ = {i ∈ V |si <∞}. (4.4)

With (4.4), we define S(t) comprising nodes in S∗ that acquire their maximum values

at time t,

S(t) = {i ∈ S∗ | x̂i(t) = si}, (4.5)

and we say i is a source at time t if i ∈ S(t). One difference between the generalized

G block and its variants (e.g., ABF, GABF and MPP) is that, in the generalized G

block a non-source node may have a finite maximum value, while in ABF, GABF or

MPP, only sources have a finite maximum value of 0. This has been demonstrated

through the tactical wireless network example in Section 2.6.

The following assumption holds for the generalized G block.

Assumption 6. Graph G is connected, eik = eki ≥ emin > 0, D defined in (4.3) obeys

D ≥ 0. S∗ defined in (4.4) in nonempty, Moreover,

si ≥ smin = min
j∈S∗
{sj} ≥ 0, ∀i ∈ V. (4.6)

As in any given iteration the estimated state of a node is obtained by one of

the bullet in (4.3), at each t, we partition V into two sets defined below.
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Definition 4.1. The set A(t) comprises all nodes that use the first case in (4.3) to

obtain x̂i(t). Define a set the set of extraordinary nodes E(t) = V \ A(t) to be those

that use the second case in (4.3) to obtain x̂i(t).

The next definition introduces the notion of the current constraining node of

i that determines x̂i(t).

Definition 4.2. For i ∈ A(t), the minimizing k in (4.2) used to find x̂i(t), is i’s

current constraining node at t. For i ∈ E(t), i is its own current constraining node.

Sources are their own constraining nodes.

Based on Definition 4.2, we give a definition of the smallest estimate from j

to i.

Definition 4.3. Consider i, j ∈ V , as the graph is connected, there exist at least one

path from j to i, e.g., j = l0 → l1 → · · · ,→ lL = i, with which i will obtain a value

based on the following recursion,

x∗lk =



slk k = 0 and sl0 6=∞

f(x∗lk−1
, elk−1lk) k 6= 0 and sl0 6=∞

∞ otherwise

(4.7)

with k ∈ {0, 1, · · · , L}. We define xij as the smallest value x∗i can have among all the

paths from j to i.

Observe from Definition 4.3 that xij may be greater than si. The key steps in

our proof are summarized as the following:
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� We first define a set S∞, based on which the stationary point of (4.1) is prede-

fined. The concept of true constraining node is also introduced.

� We identify two time varying sets U(t) and R(t) that parition V , and show

that lower bound of states of nodes in U(t) is increasing and states of nodes in

R(t) are always overestimates, indicating that beyond a finite time all states

are overestimates.

� We then show that the state of a node will converge to its stationary state after

a finite time once its true constraining node has converged.

� Convergence is proved by showing that all nodes in S∞ will converge to their

stationary states.

4.3 The stationary point

We begin by proving that all states are lower bounded. To this end we define

x̄(t) = min
i∈V

x̂i(t). (4.8)

Lemma 4.3.1. Consider (4.1), (4.2) and (4.3) under Assumption 6, smin defined in

(4.6). There exists a T such that, ∀i ∈ V , x̂i(t) ≥ smin for t ≥ T .

Proof. Consider x̄(t+ 1) = x̂i(t+ 1). If i ∈ A(t+ 1), then either x̂i(t+ 1) = si or

x̂i(t+ 1) = f(x̂j(t), eij) (4.9)

> x̂j(t) + σ (4.10)

≥ x̄(t) + σ

where in (4.9) we assume j is the current constraining node of i, and (4.10) uses the
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progressive property of f(·, ·).

If i ∈ E(t+ 1), then from (2.7), it follows

x̂i(t+ 1) = g(x̂i(t))

≥ x̂i(t) + δ (4.11)

≥ x̄(t) + δ (4.12)

Thus, either x̄(t + 1) > x̄(t) or x̄(t + 1) = x̂i(t + 1) = si holds. From (4.6), there

exists a T such that, x̄(t) ≥ smin for t ≥ T .

Define a set Smin comprising the nodes whose maximum values are smin,

Smin = {i ∈ V |si = smin}. (4.13)

From Assumption 6, Smin 6= ∅. The next lemma shows that states of nodes in Smin

will converge after a certain time.

Lemma 4.3.2. Consider (4.1), (4.2) and (4.3) under Assumption 6, M , smin, T and

Smin defined in (4.3), (4.6), Lemma 4.3.1 and (4.13), respectively. There exists a

Ts ≤ max{0, dM−smin

δ
e}+ 1 such that, ∀i ∈ Smin, x̂i(t) = smin for t ≥ T + Ts + 1.

Proof. With Lemma 4.3.1, ∀i ∈ V , x̂i(t) ≥ smin for t ≥ T . Consider i ∈ Smin, suppose

i ∈ E(T ), i.e. the first bullet of (4.3) applies. Then from (4.3) and (2.7), x̂i(t) > M

for some T ≤ t ≤ T + Ts. By definition, i ∈ A(t+ 1). From (4.2) and (4.1), x̂i(t+ 1)
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obeys

x̂i(t+ 1) = x̃i(t+ 1)

= min

{
min
k∈N (i)

{f (x̂k(t), eik)} , si
}

= si, (4.14)

where (4.14) uses the fact the ∀k ∈ V , x̂k(t) ≥ smin = si for t ≥ T and f(·, ·) is

progressive. Then as

x̃i(t+ 2) = min

{
min
k∈N (i)

{f (x̂k(t+ 1), eik)} , si
}

= si

|x̂i(t+ 1)− x̃i(t+ 2)| ≤ D, from (4.3), x̂i(t+ 2) = si. A simple induction then proves

that x̂i(t) = si for t ≥ T + Ts + 1.

We now explore some properties of xij defined in Definition 4.3.

Lemma 4.3.3. Consider xij defined in Definition 4.3, suppose sj 6= ∞ and there

exists a k such that, xjk < sj, then ∀i ∈ V , xik < xij.

Proof. From Definition 4.3, sk 6=∞. Suppose xjk is obtained from the path k = l0 →

l1 → · · · ,→ lL = j, while xij is obtained from the path j = lL → lL+1 → · · · ,→

lL′ = i, then there exists a path k = l0 → l1 → · · · ,→ lL → · · · ,→ l′L = i from k to i

such that, i will obtain an value x∗ik using (4.7). From the definition of xik, x
∗
ik ≥ xik.

Further, as xjk < sj, from (4.7), x∗ik < xij, leading to xik < xij.

Lemma 4.3.4. Consider xij defined in Definition 4.3, suppose sj 6=∞, then xij > sj.



100

Proof. This is a direct consequence of the progressive property of f(·, ·).

Define S∞ as the following:

S∞ = {i ∈ V |xij ≥ si, ∀j ∈ V \ {i}} (4.15)

From Lemma 4.3.4, with smin and Smin defined in (4.6) and (4.13), respectively, there

holds:

i ∈ Smin =⇒ i ∈ S∞, (4.16)

which also indicates that S∞ 6= ∅ from Lemma 4.3.2. We introduce the following

lemma.

Lemma 4.3.5. Consider xij defined in Definition 4.3, then ∀i /∈ S∞, there exists a

j ∈ V such that, xij is finite.

Proof. From Assumption 6, Smin 6= ∅. Consider j ∈ Smin ⊆ V , as the graph is

connected, with (4.7) and the progressive property of f(·, ·), ∀i ∈ V \ S∞, xij is

finite.

Lemma 4.3.5 implies that si 6=∞,∀i ∈ S∞. The next lemma shows a relation

between nodes in S∞ and those are not.

Lemma 4.3.6. Consider xij and S∞ defined in Definition 4.3 and (4.15), respectively.

Suppose i /∈ S∞, then there exists a j ∈ S∞ such that, xij < si.

Proof. We prove by contradiction. Without loss of generality, consider 0 /∈ S∞,

suppose ∀j ∈ S∞, x0j > s0. As 0 /∈ S∞, from (4.15), there exists a 1 ∈ V \ S∞
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such that, x01 < s0. Further, as 1 /∈ S∞, there exists a 2 /∈ S∞ such that, x12 < s1,

leading to x02 < x01 < s0 as a result of Lemma 4.3.3. However, as |V \ S∞| is finite,

there must exists a k + 1 ∈ {0, 1, · · · , k} such that xkk+1 < sk and xii+1 < si for

i ∈ {0, 1, · · · , k}.

Obviously, k + 1 6= k, suppose k + 1 = k′ ∈ {0, 1, · · · , k − 1}, then

sk′ = sk+1 < xkk+1 < sk. (4.17)

Now we claim and prove by induction that

xlk < sl, ∀l ∈ {k′, k′ + 1, · · · , k − 1}. (4.18)

(4.18) holds for l = k − 1. Suppose (4.18) holds for some l ∈ {k′ + 1, · · · , k − 1}, as

xl−1,l < sl−1 and xlk < sl by our induction hypothesis, from Lemma 4.3.3, xl−1,k <

xl−1,l < sl−1, and hence (4.18) holds and xk′k < sk′ . Further, by definition of xk′k, it

follows sk < xk′k, leading to sk < sk′ , which contradicts (4.17).

Now we aforehand define the stationary point of (4.1) x = [x1, . . . , xN ]T as the

following:

xi =


si i ∈ S∞

min
k∈N (i)

{f(xk, eik)} i /∈ S∞

(4.19)

with S∞ defined in (4.15).

From Definition 4.3 and Lemma 4.3.6, for i /∈ S∞, there exists a j ∈ S∞ such

that,

xij = xi. (4.20)
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Further from (4.6), xi obeys

smin ≤ xi ≤ si, ∀i ∈ V. (4.21)

With (4.19), we make the following definitions.

Definition 4.4. In (4.19), if xi = si, then we say that i is its own true constraining

node. Otherwise, any minimizing k in the second bullet of (4.19) is a true constraining

node of i. As i may have more than one true constraining node, its set of true

constraining nodes is designated as C(i).

Definition 4.5. We call a path from a node i to j ∈ S∞ a shortest path, if it starts

at i, ends with j ∈ S∞ and each node in the path is a true constraining node of its

predecessor. We call a shortest path from i, the longest shortest path if it has the

most nodes among all shortest paths of i. The set Fi is the set of nodes whose longest

shortest paths to the source have i+ 1 nodes. We call D(G) the effective diameter of

G if the longest shortest path among all i ∈ V has D(G) nodes.

Thus if a node i has two shortest paths one has two and the other has three

nodes, then i /∈ F1 but i ∈ F2. From Definition 4.5, Fi follows

F0 = S∞. Fi 6= ∅, i ∈ {0, 1, · · · ,D(G)− 1}. (4.22)

Also, each node in Fi+1 has a true constraining node in Fi:

C(j)
⋂
Fi 6= ∅, ∀j ∈ Fi+1. (4.23)

The effective diameter is always finite, per the following:
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Lemma 4.3.7. Under Assumption 6, D(G) defined in Definition 4.5 is finite.

Proof. As defined in Definition 4.5, consider a sequence of nodes ki in G such that,

ki−1 is a true constraining node of ki. Since there are only a finite number of nodes in

the graph, the only way that D(G) can be infinite is if for some i > j, ki = kj. From

the progressive property of f(·, ·), this leads to the contradiction:

xki > xkj = xki . (4.24)

The next section proves the global uniform and asymptotic convergence of

(4.1).

4.4 Global uniform and asymptotic convergence

Define two time varying sets U(t) and R(t) requiring recursive definitions

below.

Definition 4.6. The set R(t+ 1) = S(t+ 1)
⋃
P (t+ 1) with S(t+ 1) defined in (4.5)

and P (t+ 1) comprising nodes constrained at time t+ 1 by a member of R(t) is a set

of nodes rooted to the source. Further R(t0) = S(t0). Correspondingly, we define a

set U(t) as unrooted to the source if U(t0) = V \ S(t0), and U(t+ 1) comprises nodes

whose current constraining nodes at t+ 1, are not themselves and in U(t).

Observe from the definition of the unrooted set that

U(t) = ∅ =⇒ U(t+ 1) = ∅. (4.25)
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The sets presented in Definition 4.1 and Definition 4.6 are exemplified through GABF

in Figure 4.1. In this case, M = 4, δ = 1 and D = 0. S(0) = {1, 5} as x̂i(0) = 0 = si

for i = 1 or 5. At t = 1, x̃2(1) = x̂1(0) + e12 = x̂2(0) = 1, as D = 0, node 2 will

take 1 as the current constraining node and use the first bullet of (2.6) to update its

estimate, leading to 2 ∈ A(1)∩R(1). Meanwhile, as x̃4(1) = x̂5(0) + e45 = 1 6= x̂4(0),

D = 0 and x̂4(0) < M , node 4 will update its estimate using the second bullet of

(4.3) and take itself as the current constraining node, then 4 ∈ E(1) ∩ U(1).

00 1 3 2
11 1 1

00 1 4 3
11 1 1

00 1 5 4
11 1 1

00 1 2 5
11 1 1

00 1 2 1
11 1 1

t=0

t=1

t=2

t=3

t=4

1                     2                     3                      4                     5

1                     2                     3                      4                     5

1                     2                     3                      4                     5

1                     2                     3                      4                     5

1                     2                     3                      4                     5

Figure 4.1: Illustration of sets A(t), E(t),R(t) and U(t). Each edge length in the

graph is 1, M = 4, δ = 1, D = 0, si = 0 for i = 1, 5 and si =∞ for i = 2, 3, 4. In this

case, R(1) = A(1) = {1, 2, 5}, U(1) = E(1) = {3, 4}.
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Lemma 4.4.1 shows that U(t) and R(t), partition V.

Lemma 4.4.1. Consider (4.1), (4.2) and (4.3) under Assumption 6, with U(t) and

R(t) defined in Definition 4.6, then for all t,

U(t)
⋃
R(t) = V and U(t)

⋂
R(t) = ∅. (4.26)

Proof. Since at each t a node has only one current constraining node, U(t) and R(t)

are disjoint. We prove (4.26) by induction. From Definition 4.4.1, (4.26) holds for

t = t0. Suppose (4.26) holds for some t = t1. Consider t = t1 + 1. Every node i has

a current constraining node at t1 + 1. By the induction hypothesis this is either in

R(t) or in U(t). In the former case i ∈ R(t+ 1). In the latter case i ∈ U(t+ 1).

Define the following function:

x̂min(t) = min
j∈U(t)

{x̂j(t)} if U(t) 6= ∅. (4.27)

The next lemma shows that the lower bound of x̂i(t) with i ∈ U(t) strictly increases.

Lemma 4.4.2. Consider (4.1), (4.2) and (4.3) under Assumption 6, with A(t), E(t),

U(t) and x̂min(t) defined in Definition 4.1, Definition 4.6 and (4.27), respectively. The

following holds while the set U(t) 6= ∅:

x̂i(t) ≥ x̂min(t0) + min{σ, δ}(t− t0), ∀i ∈ U(t). (4.28)

Proof. We prove by induction. (4.28) holds for t = t0. Suppose (4.28) holds for t = t1.

If U(t1+1) is nonempty, then from (4.25) so is U(t1). Suppose x̂i(t1+1) = x̂min(t1+1),
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by definition, j the current constraining node of i ∈ U(t1 + 1) is in U(t1). Thus from

the induction hypothesis

x̂j(t1) ≥ x̂min(t1) ≥ x̂min(t0) + min{σ, δ}(t1 − t0). (4.29)

If i ∈ E(t1 + 1), then j = i and from (4.29) and (2.7) we have

x̂i(t1 + 1) = x̂min(t1 + 1)

≥ x̂j(t1) + δ

≥ x̂min(t0) + min{σ, δ}(t1 + 1− t0).

If i ∈ A(t1 + 1), then

x̂i(t1 + 1) = x̂min(t1 + 1)

= min{f(x̂j(t1), eij), si}

= f(x̂j(t1), eij) (4.30)

≥ x̂j(t1) + σ

≥ min{σ, δ}(t1 + 1− t0).

where (4.30) uses the fact that i /∈ R(t1 + 1) and thus x̂i(t1 + 1) 6= si.

We now show that all estimates of nodes in R(t) are overestimates.

Lemma 4.4.3. Consider (4.1), (4.2) and (4.3) under Assumption 6, with A(t), E(t),

R(t) and xi defined in Definition 4.1, Definition 4.6 and (4.19), respectively. For

i ∈ R(t), x̂i(t) obeys

x̂i(t) ≥ xi. (4.31)
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Proof. We prove by induction. From Lemma 4.3.2, R(t) 6= ∅ for t ≥ T + Ts + 1 with

T and Ts defined in Lemma 4.3.1 and 4.3.2, respectively. Further, with the definition

of R(t), there exists a s ≥ t0 such that, R(s) = S(s) 6= ∅, and R(t) = ∅ for t < s.

Consider i ∈ R(s) = S(s), as x̂i(s) = si, from (4.19) and (4.21), x̂i(s) ≥ xi.

Suppose (4.31) holds for t = t1 ≥ s. Consider i ∈ R(t1 + 1). If i ∈ E(t1 + 1), from

(2.7), x̂i(t1 + 1) obeys

x̂i(t1 + 1) > x̂i(t1) + δ (4.32)

≥ xi + δ (4.33)

where (4.33) uses i ∈ R(t1) and x̂i(t1) ≥ x1. If i ∈ V \ E(t1 + 1) = A(t1 + 1), suppose

j is the current constraining node of i. As i ∈ R(t1 + 1), then j ∈ R(t1), by our

induction hypothesis, x̂j(t1) ≥ xj. From (4.2), either j = i and x̂i(t1 + 1) = si ≥ xi

or

x̂i(t1 + 1) = f(x̂j(t1), eij)

≥ f(xj, eij)

≥ xi (4.34)

where equality in (4.34) holds if j is also a true constraining node of i.

Define:

xmax = max
k∈V
{xk}, (4.35)

and

T ∗ =

⌈
xmax − x̂min(t0)

min{σ, δ}

⌉
. (4.36)



108

Then from Lemma 4.4.2, we have that

x̂i(t) ≥ xmax ≥ xi, ∀i ∈ U(t), ∀t ≥ t0 + T ∗. (4.37)

Further, as U(t) and R(t) partition V , from Lemma 4.4.1,

x̂i(t) ≥ xi, ∀i ∈ V, ∀t ≥ t0 + T ∗. (4.38)

We now define the smallest estimate in Fi as

ximin = min
j∈Fi

{xj}. (4.39)

From (4.19) and (4.22), we have x0 min = smin. Define a sequence

Ti = max

{
0,

⌈
M − ximin

δ

⌉}
+ 1. (4.40)

Now we have the following lemma.

Lemma 4.4.4. Consider (4.1), (4.2) and (4.3) under Assumption 6, Fi defined in

Definition 4.5. Suppose at a time tL ≥ t0 + T ∗ with T ∗ defined in (4.36) and L ∈

{0, 1, · · · ,D(G)− 2}

x̂i(t) = xi, ∀i ∈
L⋃
i=0

Fi, ∀t ≥ tL. (4.41)

Then with Ti defined in (4.40), there holds:

x̂i(t) = xi, ∀i ∈
L+1⋃
i=0

Fi, ∀t ≥ tL + TL+1. (4.42)

Proof. As tL ≥ t0 + T ∗, from (4.38), no underestimates remain at or beyond tL.

Consider i ∈ FL+1. Suppose i ∈ E(tL + 1), we begin with deriving the lower bound

of x̂i(tL). We consider two cases. First, if i ∈ R(tL), from Lemma 4.4.3, x̂i(tL) ≥ xi.
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We prove by contradiction that in this case x̂i(tL) 6= xi. Suppose x̂i(tL) = xi, from

(4.23), there is a j ∈ FL that is a true constraining node of i, then it follows:

x̃i(tL + 1) = min

{
min
k∈N (i)

{f (x̂k(t), eik)} , si
}

≥ min

{
min
k∈N (i)

{f (xk, eik)} , si
}

(4.43)

= min {f (xj, eij) , si} (4.44)

= min {xi, si} (4.45)

= xi. (4.46)

where (4.43) uses that there are no underestimates at time tL, (4.44) and (4.45)

use the definition of true constraining node, and (4.46) uses (4.21). From (4.41),

x̂j(t) = xj for t ≥ tL, and hence x̃i(tL + 1) = x̂i(tL) = xi. With (4.3), i ∈ A(tL + 1),

contradicting our assumption. Thus, x̂i(tL) > xi if i ∈ R(tL).

Next we consider i ∈ V \ R(tL) = U(tL). From (4.37), x̂i(tL) ≥ xmax ≥ xi. If

x̂i(tL) = xi = xmax, from (4.43) to (4.46), i /∈ E(tL + 1), leading to a contradiction,

hence x̂i(tL) > xi if i ∈ U(tL). As U(t) and R(t) partition V , the following holds:

x̂i(tL) > xi ≥ xL+1 min. (4.47)

From (2.7), (4.3) and (4.40), x̂i(t) > M for some tL ≤ ti ≤ tL + TL+1 − 1 and

i ∈ A(ti + 1). Thus there is always a tL ≤ ti ≤ tL + TL+1 − 1 for which i ∈ A(ti + 1).

From (4.23), there is a j ∈ FL that is a true constraining node of i. Suppose k is the
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current constraining node of i, from (4.2) and (4.1),

x̂i(ti + 1) = min{f(x̂k(ti), eik), si}

≥ min{f(xk, eik), si} (4.48)

≥ min{f(xj, eij), si} (4.49)

≥ min{xi, si} (4.50)

= xi (4.51)

where (4.48) uses that there are no underestimates, (4.49) uses (4.19), (4.50) uses the

fact that j is a true constraining node of i, and (4.51) uses (4.21).

From (4.41), x̂j(t) = xj for t ≥ tL, it follows

x̂i(ti + 1) = xi.

Then as

x̃(ti + 2) = min
{

min
k∈N (i)

{f(x̂k(ti + 1), eik)}, si
}

≥ min
{

min
k∈N (i)

{f(xk, eik)}, si
}

≥ min{f(xj, eij), si}

= xi.

From (4.41), x̃i(ti + 2) = x̂i(ti + 1). With (4.3), we have x̂i(ti + 2) = xi, and a simple

induction proves that x̂i(t) = xi, ∀t ≥ ti + 1.

Define:

T ∗0 = max

{
0,

⌈
M −min{δ + smin, xmax}

δ

⌉}
+ 2. (4.52)
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The theorem below proves the global, uniform and asymptotic stability of (4.1) and

provides a tight bound on time to convergence.

Theorem 4.4.5. Consider (4.1), (4.2) and (4.3) under Assumption 6, with Ti, T
∗

and T ∗0 defined in (4.40), (4.36) and (4.52) respectively, for all i ∈ V ,

x̂i(t) = xi, ∀t > t0 + T ∗ + T ∗0 +

D(G)−1∑
i=1

Ti. (4.53)

Further x̂i = xi,∀i ∈ V is the only stationary point of (4.1).

Proof. Consider i ∈ F0 = S∞. Suppose i ∈ E(t0 + T ∗ + 1). We first derive the lower

bound of x̂i(t0 + T ∗).

Suppose i ∈ R(t0 + T ∗). We prove by contradiction that in this case i /∈

A(t0 + T ∗). If i ∈ A(t0 + T ∗), from (4.2), x̂i(t0 + T ∗) ≤ si. Further, as there are no

underestimates at or after t0 +T ∗ and i ∈ S∞, it follows that x̂i(t0 +T ∗) = xi = si and

x̃i(t0 +T ∗+1) = x̂i(t0 +T ∗). From (4.3), i /∈ E(t0 +T ∗+1), leading to a contradiction.

Thus, i ∈ V \A(t0 +T ∗) = E(t0 +T ∗). Then as i ∈ R(t0 +T ∗), there exists a sequence

of nodes i0, i1, · · · , iL with L ≤ T ∗ − 1 such that i0 = i, ik is a constraining node

of ik−1 at time t0 + T ∗ − k + 1, ik ∈ R(t0 + T ∗ − k) for k ∈ {1, 2, · · · , L}, and

x̂iL(t0 + T ∗ − L) = siL . Then x̂i(t0 + T ∗) obeys

x̂i(t0 + T ∗) = x̂i1(t0 + T ∗ − 1) + δ (4.54)

≥ xi1 + δ (4.55)

≥ smin + δ (4.56)

where (4.54) uses i ∈ E(t0 + T ∗), (4.55) uses i1 ∈ R(t0 + T ∗ − 1) and (4.56) uses

(4.21).
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In the case where i ∈ U(t0 +T ∗), from (4.37), x̂i(t0 +T ∗) ≥ xmax. As U(t) and

R(t) partition V , x̂i(t0 + T ∗) obeys

x̂i(t0 + T ∗) ≥ min{smin + δ, xmax} (4.57)

Then x̂i(t) > M for some t0 + T ∗ ≤ ti ≤ t0 + T ∗ + T ∗0 − 1 and i ∈ A(ti + 1), from

(4.2) and (4.1), x̂i(ti + 1) obeys

x̂i(ti + 1) = min{ min
j∈N (i)

{f(x̂j(ti), eij)}, si}

≥ min{ min
j∈N (i)

{f(xj, eij)}, si} (4.58)

= si. (4.59)

where (4.58) uses the fact that there are no underestimates for t ≥ t0 +T ∗, (4.59) uses

that i ∈ S∞. Further we have x̃i(ti + 2) = x̂i(ti + 1) = si and hence x̂i(ti + 2) = si.

Repeating the above arguments, we have x̂i(t) = xi for t ≥ ti + 1. As F0 = S∞, the

repeated application of Lemma 4.4.4 proves the result. Thus x̂i = xi,∀i ∈ V is a

stationary point of (4.1). Further, from the definition of xi in (4.19), the stationary

point is unique.

4.5 Robustness under perturbations

In this section, under some additional assumptions, we prove that the behavior

of (4.1) is ultimately bounded. The first of these additional assumptions extends the

monotonicity property to the second argument of f(·, ·) as well. Given that this

argument represents edge lengths in most applications, this is an entirely reasonable

assumption. As is also standard in most stability analysis, we also impose a Lipschitz

condition.
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Assumption 7. The function f(·, ·) is monotonic with respect to its second argument,

i.e. f(a, b) obeys

f(a, b1) ≥ f(a, b2), if b1 ≥ b2. (4.60)

Further, there exist Li > 0, such that

|f(a, b1)− f(a, b2)| ≤ L1|b1 − b2| (4.61)

and

|f(a1, b)− f(a2, b)| ≤ L2|a1 − a2| (4.62)

The perturbation we consider here is specifically on eij. Such perturbation

could reflect noise or localization error. Specifically,

eij(t) = eij + εij(t) (4.63)

with

|εij(t)| ≤ ε < emin, (4.64)

where emin is defined in Assumption 6. Notice that the perturbations need not be

symmetric, i.e. we permit

εij(t) 6= εji(t). (4.65)

In this case, (4.2) becomes

x̃i(t+ 1) = min

{
min
k∈N (i)

{f (x̂k(t), eik(t))} , si
}
. (4.66)

Define a function in the following form:

W (L2, D) =
D−1∑
i=0

Li2 =


LD
2 −1

L2−1
L2 6= 1

D L2 = 1.

(4.67)
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To address the ultimate bound of x̂i(t), we first define a shrunken graph that corre-

sponds the smallest possible values of eij.

Definition 4.7. Given a graph G, we define a G−, and G− is a shrunken version of

G such that, ∀i ∈ V and j ∈ N (i) in G, eij becomes e−ij in G−, and e−ij obeys

e−ij = eij − ε (4.68)

with ε defined in (4.64). Also consider (4.1) implemented on this shrunken graph, i.e.

X̂i(t+ 1) = F (X̃i(t+ 1), X̂i(t), vi). (4.69)

with X̃i(t+ 1) obeying

X̃i(t+ 1) = min

{
min
k∈N (i)

{
f
(
X̂k(t), e

−
ik

)}
, si

}
(4.70)

As G− satisfies the same assumptions as G and is perturbation free, define X =

[X1, · · · , XN ] as a stationary point in G− to which (4.69) converges.

Correspondingly, we define Xij, S−∞ and D(G−) for G− as we have defined xij,

S∞ and D(G) for G in Definition 4.3, (4.15) and Definition 4.5.

From (4.15), (4.19) and (4.21), the stationary point in G− obeys

Xi =


si i ∈ S−∞

min
k∈N (i)

{f(Xk, e
−
ik)} i /∈ S−∞.

(4.71)

with

S−∞ = {i ∈ V |Xij ≥ si, ∀j ∈ V \ {i}}, (4.72)
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Similarly, the following holds in G−,

smin ≤ Xi ≤ si, ∀i ∈ V, (4.73)

and

Smin ⊆ S−∞. (4.74)

As eij(t) > 0 for all t under perturbations, the lower bound of x̂i(t) for i ∈ U(t) still

increases under perturbations as shown in the following lemma.

Lemma 4.5.1. Consider (4.66), (4.1) and (4.3), with U(t) and x̂min(t) defined in

Definition 4.6 and (4.27), respectively. The following holds while the set U(t) 6= ∅:

x̂i(t) ≥ x̂min(t0) + min{σ, δ}(t− t0), ∀i ∈ U(t). (4.75)

Proof. The proof is similar to that of Lemma 4.4.2, and thus omitted.

Based on Definition 4.7, we now turn to R(t), and prove that under pertur-

bations all estimates of nodes in R(t) are lower bounded by their true estimates in

G−.

Lemma 4.5.2. Consider (4.66), (4.1) and (4.3) under Assumption 7, with A(t),

E(t), R(t) and Xi defined in Definition 4.1, 4.6 and 4.7, respectively. For i ∈ R(t),

x̂i(t) obeys

x̂i(t) ≥ Xi. (4.76)

Proof. We prove by induction. Notice that Lemma 4.3.1 and 4.3.2 still hold under

perturbations, leading to R(t) 6= ∅ for t ≥ T +Ts+1 with T and Ts defined in Lemma
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4.3.1 and 4.3.2, respectively. From the definition of R(t), there exists a s ≥ t0 such

that, R(s) = S(s) and R(t) = ∅ for t < s. ∀i ∈ R(s) = S(s), as x̂i(s) = si, from

(4.73), x̂i(s) ≥ Xi. Suppose (4.76) holds for t = t1 ≥ s. For i ∈ R(t1 + 1), if

i ∈ E(t1 + 1), from (2.7), x̂i(t1 + 1) obeys

x̂i(t1 + 1) > x̂i(t1) + δ (4.77)

≥ Xi + δ (4.78)

where (4.78) uses i ∈ R(t1) and x̂i(t1) ≥ X1. If i ∈ V \ E(t1 + 1) = A(t1 + 1),

suppose j is the current constraining node of i. As i ∈ R(t1 + 1), then j ∈ R(t1),

from our induction hypothesis, x̂j(t1) ≥ Xj. From (4.66) and (4.73), either j = i and

x̂i(t1 + 1) = si ≥ Xi or

x̂i(t1 + 1) = f(x̂j(t1), eij(t))

≥ f(Xj, e
−
ij) (4.79)

≥ Xi (4.80)

where (4.79) uses the fact that f(·, ·) is monotonic increasing on both arguments and

eij(t) ≥ e−ij, and equality in (4.80) holds if j is also a true constraining node of i in

G−.

The next lemma relates the stationary points of G and G−.

Lemma 4.5.3. With Xi and G− defined in Definition 4.7, xi and G in (4.19) and

Assumption 7, ε in (4.64), W (·) in (4.67) and D(·) in Definition 4.5. ∀i ∈ V ,

xi ≤ Xi +W (L2,D(G−)− 1)L1ε.
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Proof. Consider nodes n1, n2, · · · , nT such that n1 ∈ S−∞, Xn1 = sn1 , and for all

i ∈ {1, . . . , T − 1}, ni is a true constraining node of ni+1 in G−. Each node in G− is

in one such sequence. As from Definition 4.5, T ≤ D(G−), the result will follow if

∀i ∈ {1, · · · , T}

xni
−Xni

≤ W (L2, i− 1)L1ε, (4.81)

where W (L2, i−1) = 0 if i = 1. From 4.21, xni
≤ sni

, (4.81) holds for i = 1. Suppose

it holds for some i ∈ {1, · · · , T − 1}. As ni and ni+1 are neighbors in both G and G−,

ni is a true constraining node of ni+1 in G−, xni+1
obeys

xni+1
≤ f(xni

, enini+1
)

≤ f(Xni
+W (L2, i− 1)L1ε, enini+1

) (4.82)

≤ f(Xni
, enini+1

) + L2W (L2, i− 1)L1ε (4.83)

= f(Xni
, e−nini+1

+ ε) + L2W (L2, i− 1)L1ε (4.84)

≤ f(Xni
, e−nini+1

) + L1ε+ L2W (L2, i− 1)L1ε (4.85)

= Xni+1
+W (L1, i)L1ε (4.86)

where (4.82) uses the induction hypothesis that xni
≤ Xni

+ W (L2, i− 1)L1ε, (4.83)

uses (4.62), (4.84) uses (4.68), (4.85) uses (4.61), and (4.86) uses the fact that ni is a

true constraining node of ni+1.

We define the largest true estimate in G− as

Xmax = max
k∈V
{Xk}, (4.87)
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and T− as

T− =

⌈
Xmax − x̂min(t0)

min{δ, σ}

⌉
(4.88)

Thus, from Lemma 4.5.1, we have

x̂i(t) ≥ Xmax, ∀i ∈ U(t), ∀t ≥ t0 + T−. (4.89)

As U(t) and R(t) partition V , from Lemma 4.5.2,

x̂i(t) ≥ Xi, ∀i ∈ V, ∀t ≥ t0 + T−. (4.90)

With Fi defined in Definition 4.5, define Ximin as

Ximin = min
j∈Fi

{Xj} (4.91)

Define a sequence

T−i = max
{

0,
⌈M −Ximin

δ

⌉}
+ 1. (4.92)

Then we have the following lemma.

Lemma 4.5.4. Consider (4.66), (4.1) and (4.3) under Assumption 7, ε defined in

(4.64), W (·) defined in (4.67). Suppose D in (4.3) obeys

D ≥ (W (L2,D(G−)− 1) +W (L2,D(G)− 1))L1ε, (4.93)

and at a time tL ≥ t0 + T− defined in (4.88), for L ∈ {0, 1, · · · ,D(G)− 2}

x̂i(t) ≤ xi +W (L2, L)L1ε, ∀i ∈ FL, ∀t ≥ tL. (4.94)

with W (L2, L) = 0 if L = 0. Then with T−i define in (4.92), for all i ∈ FL+1 and

t ≥ tL + T−L+1, there holds:

xi −W (L2,D(G−)− 1)L1ε ≤ x̂i(t) ≤ xi +W (L2, L+ 1)L1ε. (4.95)
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Proof. As tL ≥ t0 + T−, from (4.90), ∀i ∈ V , x̂i(t) ≥ Xi for t ≥ tL. Further, with

Lemma 4.5.3, the left side of (4.95) has been proved.

For the right hand side of (4.95), consider i ∈ FL+1. Suppose i ∈ E(tL + 1).

We first derive the lower bound of x̂i(tL). If i ∈ R(tL), from (4.90), x̂i(tL) ≥ Xi. We

now prove by contradiction that in this case x̂i(tL) 6= Xi.

From (4.23), there exists a j ∈ FL that is a true constraining node of i in G

such that,

x̃i(tL + 1) = min

{
min
k∈N (i)

{f (x̂k(tL), eik(tL))} , si
}

≤ min{f(x̂j(tL), eij(tL)), si}

≤ f (x̂j(tL), eij + ε) (4.96)

≤ f (xj +W (L2, L)L1ε, eij) + L1ε (4.97)

≤ xi + L2W (L2, L)L1ε+ L1ε (4.98)

= xi +W (L2, L+ 1)L1ε (4.99)

where (4.96) uses (4.63) and (4.64), (4.97) uses (4.61) and (4.94), and (4.98) uses

(4.62) and the definition of the true constraining node. Further,

min
k∈N (i)

{f (x̂k(tL), eik(tL))} ≥ min
k∈N (i)

{
f
(
Xk, e

−
ik

)}
(4.100)

= Xi (4.101)

where (4.100) uses that xi(t) ≥ Xi, ∀i ∈ V for t ≥ tL, eik(tL) ≥ e−ik and f(·, ·)

is monotonic increasing with respect to its two arguments, and (4.101) uses (4.71).
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From (4.66) and (4.73), (4.101) leads to

x̃i(tL + 1) ≥ Xi (4.102)

From (4.102) and (4.99), if x̂i(tL) = Xi, then it follows

|x̃i(tL + 1)− x̂i(tL)| ≤ |xi +W (L2, L+ 1)L1ε−Xi|

≤ W (L2,D(G−)− 1)L1ε+W (L2, L+ 1)L1ε (4.103)

≤ D (4.104)

where (4.103) uses Lemma 4.5.3. (4.104) indicates i ∈ A(tL + 1), contradicting our

assumption that i ∈ E(tL + 1). Thus x̂i(tL) > Xi if i ∈ R(tL).

In the case where i ∈ U(tL). From (4.89), x̂i(tL) ≥ Xmax ≥ Xi. For x̂i(tL) =

Xi, from (4.97) to (4.104), i /∈ E(tL+1), leading to a contradiction. Thus, x̂i(tL) > Xi

if i ∈ U(tL), and the following holds

x̂i(tL) > Xi ≥ XL+1 min, ∀i ∈ FL+1. (4.105)

Then from (4.92), x̂i(t) > M for some tL ≤ ti ≤ tL + T−L+1 − 1 and i ∈ A(ti + 1).

From (4.19) and Definition 4.5, there is a j ∈ FL that is a true constraining node of

i in G. From (4.66) and (4.1), x̂i(ti + 1) obeys

x̂i(ti + 1) ≤ min{f(x̂j(ti), eij(ti)), si}

≤ f(x̂j(ti), eij(ti)) (4.106)

≤ f(xj +W (L2, L)L1ε, eij + ε) (4.107)

≤ f(xj, eij) + L2W (L2, L)L1ε+ L1ε (4.108)

≤ xi +W (L2, L+ 1)L1ε (4.109)
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where (4.107) uses (4.63), (4.64) and (4.94), (4.108) uses (4.61) and (4.62).

Now we claim and prove by induction that

x̂i(t) ≤ xi +W (L2, L+ 1)L1ε, ∀t ≥ ti + 1. (4.110)

(4.110) holds for t = ti+ 1. Suppose (4.110) holds for some t1 ≥ ti+ 1. For t = t1 + 1,

suppose j is the true constraining node of i, from (4.2) and (4.1),

x̃i(t1 + 1) ≤ min{f(x̂j(t1), eij(t1)), si}

≤ xi +W (L2, L+ 1)L1ε (4.111)

where (4.111) uses (4.106-4.109). As

min
k∈N (i)

{f (x̂k(t1), eik(t1))} ≥ min
k∈N (i)

{
f
(
Xk, e

−
ik

)}
≥ Xi (4.112)

and Xi ≤ si by (4.73). With (4.66)

x̃i(t1 + 1) ≥ Xi (4.113)

Further, as the left side of (4.95) holds and x̂i(t1) ≤ xi + W (L2, L + 1)L1ε by our

induction hypothesis, with D obeying (4.93),

|x̃i(t1 + 1)− x̂i(t1)| ≤ |xi +W (L2, L+ 1)L1ε−Xi|

= W (L2,D(G−)− 1)L1ε+

W (L2, L+ 1)L1ε

≤ D.

From (4.3), x̂i(t1+1) = x̃i(t1+1) ≤ xi+W (L2, L+1)L1ε, and our assertion follows.
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The next theorem proves that the generalized G block is ultimately bounded

under bounded persistent perturbations and provides an upper bound on time to

attain it.

Theorem 4.5.5. Consider (4.66), (4.1) and (4.3) under Assumption 7, D(G) and

D(G−) defined in Definition 4.5 and 4.7, ε in (4.64), T− in (4.88) and T−i in (4.92).

Suppose D in (4.3) obeys

D ≥ (W (L2,D(G−)− 1) +W (L2,D(G)− 1))L1ε, (4.114)

with W (·, ·) defined in (4.67), then for all i ∈ V and t ≥ t0 +T−+ T̄0 +
∑D(G)−1

i=1 T−i ,

xi −W (L2,D(G−)− 1)L1ε ≤ x̂i(t) ≤ xi +W (L2,D(G)− 1)L1ε (4.115)

Proof. From (4.90), ∀i ∈ V, x̂i(t) ≥ Xi for t ≥ T−. With Lemma 4.5.3, the left side

of (4.115) has been proved.

Consider i ∈ F0 = S∞. Suppose i ∈ E(t0 +T−+ 1). We first address the lower

bound of x̂i(t0 + T−). If i ∈ R(t0 + T−), we prove by contradiction that in this case

i /∈ A(t0 + T−). If i ∈ A(t0 + T−), from (4.66) and Lemma 4.5.2, x̂i(t0 + T−) obeys

Xi ≤ x̂i(t0 + T−) ≤ si (4.116)

Further,

min
k∈N (i)

f
(
x̂k(t0 + T−), eik(t0 + T−)

)
≥ min

k∈N (i)
f
(
Xk, e

−
ik

)
(4.117)

= Xi (4.118)
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where (4.117) uses that x̂i(t) ≥ Xi for t ≥ t0 + T− and all i ∈ V , eik(t) ≥ e−ik for all

t and f(·, ·) is monotonic increasing with respect to its two arguments, and (4.118)

uses (4.71). As Xi ≤ si for all i ∈ V , from (4.66), x̃i(t0 + T− + 1) obeys

Xi ≤ x̃i(t0 + T− + 1) ≤ si. (4.119)

As i ∈ S∞, xi = si, (4.116) and (4.119) imply that

|x̃i(t0 + T− + 1)− x̂i(t0 + T−)| ≤ xi −Xi

≤ W (L2,D(G−)− 1)L1ε

≤ D

leading to i /∈ E(t0+T−+1), contradicting our assumption. Thus i ∈ V \A(t0+T−) =

E(t0 + T−). As i ∈ R(t0 + T−) as we have assumed, there exists a sequence of nodes

i0, i1, · · · , iL with L ≤ T− − 1 such that i0 = i, ik is a constraining node of ik−1 at

time t0 + T− − k + 1, ik ∈ R(t0 + T− − k) for k ∈ {1, 2, · · · , L}. Then x̂i(t0 + T−)

obeys

x̂i(t0 + T−) = x̂i1(t0 + T− − 1) + δ

≥ Xi1 + δ (4.120)

≥ smin + δ (4.121)

where (4.120) uses i1 ∈ R(t0 + T− − 1) and (4.121) uses (4.73).

In the case where i ∈ U(t0 + T−), from (4.89), x̂i(t0 + T−) ≥ Xmax. As

U(t) ∪R(t) = V , the following holds:

x̂i(t0 + T−) ≥ min{Xmax, smin + δ}. (4.122)
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From (4.3) and (2.7), x̂i(t) > M for some t0 + T− ≤ ti ≤ t0 + T− + T̄0 − 1 and

i ∈ A(ti + 1). x̂i(ti + 1) obeys

x̂i(ti + 1) = min{f(x̂j(ti), eij(t)), si}

≤ si

= xi

Now we prove by induction that

x̂i(t) ≤ si = xi, ∀t ≥ ti + 1. (4.123)

(4.123) holds for t = ti+ 1. Suppose (4.123) holds for some t1 ≥ ti+ 1. For t = t1 + 1,

from (4.117) to (4.119), the following holds:

Xi ≤ x̃i(t1 + 1) ≤ xi (4.124)

Further, as x̂i(t1) ≤ xi by our induction hypothesis and the left side of (4.115) holds,

|x̃i(t1 + 1)− x̂i(t1)| ≤ |xi −Xi|

= W (L2,D(G−)− 1)L1ε

≤ D

From (4.3), x̂i(t1 + 1) = x̃i(t1 + 1) ≤ si. Thus, ∀i ∈ F0, the following holds:

xi −W (L2,D(G−)− 1)L1ε ≤ x̂i(t) ≤ xi, ∀t ≥ t0 + T− + T−0 . (4.125)

Then the repeated application of Lemma 4.5.4 proves our result.
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(a) ∆+(t)(GABF) (b) ∆−(t)(GABF)

(c) ∆+(t)(ABF) (d) ∆−(t)(ABF)

Figure 4.2: Comparison of time to convergence between GABF and ABF for 100 runs

of 500 nodes randomly distributed in a 4×1 km2 area, showing that GABF converges

faster than ABF.

4.6 Simulations

In this section, we empirically confirm the results presented in the prior sec-

tions through three scenarios in simulation. Specifically, we compare the performance

of ABF and GABF. GABF follows (2.18) defined in Section 2.4, while ABF follows

(2.13) defined in Section 2.3. ABF and GABF are both instances of (4.1). While in

ABF, M in (4.3) is set to be −∞, GABF has no restrictions on M .

In this case, 500 nodes, one of which is a source, are randomly distributed in a

4×1 km2 area, each node communicate over a 0.25 km radius and runs simultaneously.
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The simulation is run 100 times. For perturbations, we consider static nodes with

asymmetric noise in the estimated eij, then edge lengths change from their nominal

value eij as ēij(t) = eij + εij(t), and εij(t) obeys

|εij(t)| < ε < emin, (4.126)

ensuring no edge length is negative. Further, the noise is asymmetric, i.e., eij(t) 6=

eji(t). In all simulations, εij ∈ U(−ε, ε) with ε = emin. D,M and δ in GABF are set

as D = (D(G) +D(G−)− 2)ε and M = δ =
√

17 km, in which case ∆+(t) and ∆−(t)

in GABF will have the same ultimate bounds as in ABF according to our Theorem

4.5.5.

We first compare their performance without perturbations. From Figure 4.2

(c) and (d), while ∆+(t) in ABF converges within D(G) rounds, ∆−(t), constrained

by the ”rising value problem”, takes much longer to converge, and the average con-

vergence time for all 100 trials is 946 rounds. In GABF, as shown in Figure 4.2 (a)

and (b), the ”rising value problem” is alleviated, and the average convergence time

is 616 rounds.

For the robustness of GABF and ABF under perturbations. We randomly

pick 5 trials and apply the perturbations described above. As shown in Figure 4.3,

∆+(t) and ∆−(t) in both ABF and GABF will have the same ultimate bounds, which

confirms our Theorem 4.5.5.
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(a) ∆+(t)(GABF under perturbations)
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(b) ∆−(t)(GABF under perturbations)
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(c) ∆+(t)(ABF under perturbations)
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(d) ∆−(t)(ABF under perturbations)

Figure 4.3: Comparison of robustness between GABF and ABF for 100 runs of 500

nodes randomly distributed in a 4× 1 km2 area, showing that both GABF and ABF

have the same ultimate bounds.
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4.7 Conclusion

In this chapter, we provide a global uniform asymptotic stability of the gener-

alized G block. With an additional Lipschitz condition on the update kernel, we have

also established ultimate bounds in face of persistent perturbations. The analysis for

the generalized G block, as well as the analyses for its specific variants, will serve to

provide design insights in interconnections involving other basis blocks,
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CHAPTER 5
ANALYSIS OF COMPOSITIONS OF BASIS BLOCKS

5.1 Introduction

Having completed the stability analysis of G blocks in both specialized and

general settings, we now turn to compositions, by considering two examples. While

in the context of this thesis this serves the purpose of illustrating the power of sta-

bility analysis framework to the analysis of such compositions, these examples are

of independent interest. The first, a G − C combination, serves to estimate such

collective states in a network of devices, like the total resources available to the net-

work. The other is a feedback interconnection of G and C blocks for leader election.

Though leader election is a well studied topic, intriguingly this feedback combination

of Aggregate Computing basis blocks provides an algorithm that has certain superior

attributes to others in the literature. For the G − C combination we analyze the

error bounds and dynamics. For leader election we characterize the conditions for

its GUAS and demonstrate its resilience. The analysis of the leader election algo-

rithm in particular serves as the first example of analysis of feedback compositions of

Aggregate Computing basis blocks.

Sections 5.2 and 5.3 respectively consider the G − C combination and leader

election.
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5.2 A G-C combination

We first analyze the G-C combination, which is a state estimation algorithm

based on spanning trees. Efficient resilient algorithms have been found for special

cases of collective state estimation, such as the use of gossip for estimating monotonic

functions (e.g. [19], [65] and [62]). Here we focus our study on spanning-tree aggre-

gation, one of the most frequently used approaches to collective state estimation(e.g.,

[55, 69, 54]). Amongst the many variants of spanning tree distributed state estima-

tion, we focus on one introduced in [16]: a G block is used to construct a spanning

tree, where each node chooses its parent as its current constraining node, and the C

block accumulates resource estimates on this spanning tree as the following:

Oi(t+ 1) = Oi(t) +
∑

j∈Ci(t+1)

Oj(t) (5.1)

where Ci(t) denotes the nodes i constrains at time t and Oi(t) is the resource estimate

of node i at time t. In other words, under C block, each node accumulates resource

estimates from all the nodes it constrains, and combines with its own estimate to be

further collected by its constraining node. In this section, we consider a C block using

summation. For a general C block, it may use other commutative and associative

operations including idempotent ones.

In an aggregate computing setting, the G and C blocks run simultaneously,

the latter does not wait for the spanning tree construction to be completed before it

starts collecting.



131

5.2.1 Error bounds and dynamics

In this section, we first analyze the worst-case errors in the collective state

estimate that can be produced by the C block, then extend to consider the interaction

of C block with the distance estimation algorithms that may be used to produce its

potential input.

We first introduce two definitions:

Definition 5.1. Given a spanning tree T , a node is said to be at level i if it is i hops

away from the source node.

Definition 5.2. Given two nodes a and b in a spanning tree, if a and b are connected

and b is one level higher than a, then a is defined as the parent of b and b as the child

of a.

By definition of a spanning tree at a given iteration a node can have at most one

parent. We consider the perturbation of estimates computed by the C block caused

by a spanning tree that varies with time. Specifically, in each cycle, the parent of

a node may change. In such a case the child may inform both the new and the old

parents when it transmits its estimate. Cycles are not synchronized, so updates can

occur in any order. As such:

� A sub-tree estimate is duplicated if node a switches parent from b to c, and the

nodes update in order b < a < c, since b sends an estimate including a as a

child, then a notifies b and c of the switch, and finally c sends an estimate also

including a as a child.
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� A sub-tree estimate is lost if node a switches parent from b to c and the nodes

update in order c < a < b, since c sends an estimate without a as a child, then

a notifies b and c of the switch, and finally b sends an estimate also without a

as a child.

The following assumption holds in our analysis.

Assumption 8. Under the duplicating and loss perturbations described above, we

assume the level of a node does not change.

We will evaluate duplication and loss potential by considering the case where

the C block is applied to count devices, i.e., summing a local constant of 1 from each

node. First, we have the following lemma:

Lemma 5.2.1. Suppose Assumption 8 holds. Under duplicating perturbation, if there

is more than one node at level i, then the sum of transmitted values Oj of all nodes

j ∈ Si, where Si denotes the set of nodes at level i, satisfies

∑
j∈Si

Oj ≤ 2
∑
j∈Si+1

Oj + |Si|

Proof. Suppose in this case, there are n nodes at level i, and the number of nodes

with decreased values in the current cycle is m. Then we have

∑
j∈Si

Oj =
m∑
j=1

Oj +
n∑

j=m+1

Oj

≤
∑
j∈Si+1

Oj +m+
n∑

j=m+1

Oj (5.2)

≤
∑
j∈Si+1

Oj +m+
∑
j∈Si+1

Oj + n−m (5.3)

= 2
∑
j∈Si+1

Oj + |Si|
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Equality in (5.2) holds when in the previous cycle, all the nodes at level i + 1 are

children of those m nodes at level i while the remaining n−m nodes at level i have

no children. Equality in (5.3) holds when those m nodes lose all their children and

all their children choose the remaining n −m nodes as their parents in the current

cycle.

Based on Lemma 5.2.1, we have the following theorem.

Theorem 5.2.2. Suppose Assumption 8 holds. Under the perturbation described

above, for a spanning tree with n nodes, value of the source node satisfies the tight

bound

Os ≤


2

n+1
2 − 1 n is odd

2
n
2 + 2

n
2
−1 − 1 n is even

where Os denotes the value of source node.

Proof. First, we consider the case that all levels in the spanning tree have more than

one node, then we consider the case that some or all levels have only one node, and

show that value of the source node resulted from the former case will be larger than

that in the latter case.

For the former case where each level has more than one node, when n is odd,

suppose value of the source node is maximized when there are l levels in the spanning

tree(here we assume the bottom level is level l), according to Lemma 5.2.1, Os satisfies

Os ≤
l∑

i=1

2i−1|Si|+ 1 (5.4)
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Figure 5.1: Example of achieving the maximum source value (adapted from [56]).

where Si denotes the set comprised of the nodes at level i.

As we can see from (5.4), the sum grows exponentially with the number of

levels and grows linearly with the number of nodes at each level. Thus, value of the

source node will be maximized by maximizing the number of levels, which means that

each level should have two nodes and l = (n − 1)/2, then value of the source node

satisfies

Os ≤
(n−1)/2∑
i=1

2i−1|Si|+ 1

= 2
n+1
2 − 1 (5.5)

where |Si| = 2 for i = 1, 2, .., l.

In (5.5), we assume that all values of nodes transmitted from higher levels to

lower levels all get doubled. This is a tight bound, and an example is shown in Figure

5.1.
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As shown in Figure 5.1, all nodes in the same level share the same parent in

every cycle, and nodes at the highest level change their common parent back and

forth from the second cycle, nodes at the second highest cycle follow this from the

third cycle, and so on. The source value grows exponentially and finally achieves its

maximum value defined in (5.5).

If the number of nodes in the graph is even and value of the source node is

maximized when there are l levels in the spanning tree. Since the number of nodes

is even, there will be one level with a single node. The question is that where to put

this single node in order to achieve the maximum value of the source node. Here we

claim that value of the source node will be maximized when the single node is at the

highest level. The proof (omitted due to space constraints) follows similar reasoning

as before, in essence finding that it is always better to replace two layers of single

nodes with one layer of two nodes, and that such replacements are better at lower

layers.

Next, we show the lower bound of value of the source node. First, we provide

the following lemma.

Lemma 5.2.3. Suppose Assumption 8 holds. Under loss perturbation, if there is

more than one node at level i, then the sum of values of all nodes transmitted from

level i satisfies ∑
j∈Si

Oj ≥ |Si|

Proof. Suppose in this case, there are n nodes at level i, and the number of nodes
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with increased values in the current cycle is m. Then we have

∑
j∈Si

Oj =
m∑
j=1

Oj +
n∑

j=m+1

Oj

≥ m+
n∑

j=m+1

Oj (5.6)

≥ m+ n−m (5.7)

= |Si|

Equality in (5.6) holds when those m nodes have no children in the previous cycle,

and equality in (5.7) holds when the remaining n−m nodes lose all their children in

the current cycle.

Based on this, we have the following theorem.

Theorem 5.2.4. Suppose Assumption 8 holds. Under the perturbation described

above, for a spanning tree with n nodes, value of the source node satisfies

Os ≥


n n ≤ 2

3 n ≥ 3

Proof. Cases n = 1 and n = 2 are trivial, since there is no parent switching. When

n ≥ 3, we have

Os ≥
∑
j∈S1

Oj + 1 (5.8)

If there is only one node at level 1, then Os ≥ 3 since there must be at least one node

at level 2. According to Lemma 5.2.3, if there are more than one node at level 1, then
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under the perturbation,

Os ≥ |S1|+ 1 (5.9)

≥ 3 (5.10)

Equality in (5.9) holds when nodes in level 1 satisfy the conditions mentioned in

Lemma 5.2.3, and equality in (5.10) holds when there are two nodes at level 1.

5.2.2 Empirical comparison

To test these predictions, we ran experiments using using MIT Proto [13]

to simulate a network of unsynchronized devices. In particular, we ran tests on

devices randomly arranged in a rectangular region with neighbors determined by a

unit disc graph. The G block here used to calculate the distance from a single fixed

source devices is in a different manner for each instance: one using hop-count (i.e.,

Adaptive Bellman-Ford with unit distance), one by straight ABF, and one by Flex-

Gradient [11]. Specifically, Flex-Gradient is designed to limit the radius of disruption

from network oscillations. It accomplishes this by tolerating a set fraction of error in

estimate per hope, such that the distance that a correction propagates is proportional

to the size of the correction.

Error in state estimation is then the difference between the number of devices

in the network and the state estimate output from the C block at the source device.

To test the effects of scale, we ranged the width of the arena from 2 to 20 units in steps

of 2 units, while keeping its other dimension at 2 units, and placed the source device

initially at the one extreme of the long axis of the arena. The number of devices
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(b) Example estimate variation over time

in a 20 unit width space

Figure 5.2: Examples of typical estimate variation over time (figure from [56]), show-

ing excerpts from a individual simulation run on a network dispersed through a space

(a) 4 units in width and (b) 20 units in width. Notice that most transients are

relatively short, but they are much more frequent for hop-count than for Adaptive

Bellman-Ford or Flex-Gradient, and they tend to be underestimates rather than over-

estimates, particularly for hop-count.

was scaled proportional to the area of the arena, at 10 devices per square unit, i.e.,

from 40 devices in a 2× 2 arena to 400 devices in a 20× 2 arena. To inject continual

perturbation into this network, each device moved randomly following a reactive

Levy walk (a scale-free form of constrained random walk [12]) at a rate of 0.0025

units/second. Each trial was run for 1000 simulated seconds, 10 trials per condition,

recording values at each second. Our analysis, however, drops the first 100 seconds

of each trial as being potentially still affected by convergence from initialization.
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When diameter is low, it is expected that there should not be many opportu-

nities for disruption on any given chain of parents to the source, and indeed we see

that the estimates are often correct, but with frequent transients, sometimes caus-

ing large transients in estimate value. At high diameter, most devices are far from

the source, so there are many opportunities for information to be duplicated or lost.

Moreover, many of the devices share at least part of their path to the source, creating

critical links whose disruption is likely to cause large transients. Figure 5.2 shows

excerpts from two of trials, illustrating that the typical patterns in how estimates

were observed to vary from the true value follow these predictions. Most individual

transients are relatively short, but they are much more frequent for hop-count than

for Adaptive Bellman-Ford or Flex-Gradient, and they tend to be underestimates

rather than overestimates, particularly for hop-count.

Analysis of the overall statistics of errors versus width bears out these ob-

servations. Figure 5.3a shows that as the width of the space increases (and thus the

diameter of the network rises), the mean relative error in estimates rises approximately

linearly—though the high degree of variation in the behavior of Adaptive Bellman-

Ford makes difficult to verify for that case. Complementarily, Figure 5.3b shows that

the amount of time that the estimate spends equal to the true value decreases. ap-

proximately exponentially with increasing width. This is as would be expected if we

consider reconfiguration (and thus transient duplication or loss) to be equally likely

to occur at any location in the network. In general, having a smoother input poten-

tial produces better results: Adaptive Bellman-Ford slightly outperforms hop-count
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(b) Correctness vs. Width

Figure 5.3: The more hops spanned by the network, the higher the relative error in

estimates (a) and the smaller amount of time that the estimate is correct. Further-

more, the smoother the input potential, the better estimation performs (figure from

[56]).

distance values, and Flex-Gradient produces much better performance than both.

A deeper inspection of the errors finds that the distribution of individual error

values is also consistent with the prediction of the importance of smoothness of po-

tential from our analysis. Figure 5.4 shows a typical histogram of error ratios, in this

case from the collection of trials with a width of 16 hops. Running the C block with

all three potential algorithms results in a clear “spike” with a plurality of values being

equal (or almost equal) to the true value, and all three have nearly identical rates

of overestimates from transient duplication of values. The three potential algorithms

differ starkly, however, in the distribution of underestimates. Hop-count distances

are the least able to distinguish between alternative paths, and appear to pay for

this in generally increased volatility. Adaptive Bellman-Ford usually performs bet-
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Figure 5.4: Plot from [56] of typical histogram of error values, showing that smooth

adaptation of potential prevents transient value loss.

ter, but in certain circumstances can experience long underestimate transients due to

the “rising value problem” [14, 27]: when this problem occurs, it can cause a severe

underestimate to last for a long time, as seen in the distribution spikes low values.

Flex-Gradient, on the other hand, because it preserves smoothness at the cost of

accuracy in distance estimates, suffers from much less loss of value than both of the

others, explaining its superior performance.

5.3 A resilient leader election algorithm

Leader election is widely recognized as a fundamental problem in distributed

systems. It permits a network of nodes to collectively choose a node as a leader in a

distributed, and in our case, resilient fashion. A resilient algorithm should must ensure
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the eventual election of a single leader and should have the ability to recover from

any transient perturbations like the disappearance of leaders, temporary, though non-

persistent emergence of false leaders and link failures that leave the graph connected.

In the sequel we use the following standard notation. An algorithm has a time

complexity of Θ(D) if there exist positive constants k1, k2 and D0 such that, k1D ≤

running time ≤ k2D for D ≥ D0. An algorithm has a time complexity of Ω(D) if

there exist positive constants k1 and D0 such that, k1D ≤ running time for D ≥ D0.

An algorithm has a time complexity of O(D) if there exist positive constants k1 and

D0 such that, k1D ≥ running time for D ≥ D0.

Starting from the earliest formulation of leader election algorithm in 1977 e.g.

[38] and [53], the study of leader election algorithms analyzes various attributes, in-

cluding complexity (time, space and message complexities) of deterministic leader

election on general networks with identifiers, the complexity of probabilistic leader

election on anonymous networks, the complexity of leader election on some specific

networks such as ring graphs and complete graphs, and complexity of leader elec-

tion on asynchronous graphs. In this thesis we assume that each node carries a

unique identifier of size O(logN) bits with N the number of nodes, and each node

exchanges messages with its neighbors in synchronous rounds. Moreover, time, space

and message complexities are measured by communication rounds, bits and logN

bits respectively.

In [61], a simple leader election algorithm is presented for general networks

via the construction of a breadth first search tree (BFS) rooted in the leader. Time
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and message complexities of the algorithm are O(D) and O(DE) respectively, where

D is the diameter of the network and E is the number of edges. This algorithm is

time optimal as the global lower bound on the time required by the leader election

algorithm in general synchronous networks is Ω(D) rounds [51]. On the other hand,

[24] proposes a solution that elects a leader in O(D + logN) rounds by only sending

messages of size O(1) instead of O(logN) bits. However, both these algorithms

assume the graph is perturbation free.

Some time optimal solutions consider perturbations but also assume nodes

have such prior knowledge of the graph as the number of nodes N or the diameter

D. In face of loss of nodes or network growth such assumptions cannot be sustained.

In [8], the authors propose a time optimal leader election algorithm by implementing

the Bellman-Ford algorithm with IDs. This algorithm requires nodes know an upper

bound on the diameter of the network. Similarly, [22] provides a time-optimal leader

election algorithm by assuming nodes know some upper bound on D. The space

complexity of both solutions is O(logN logD) as they require Θ(logN logD) bits per

node.

There are algorithms that accommodate perturbations without advance knowl-

edge of the network. In [1] and [48], authors present time optimal leader election al-

gorithms without any prior knowledge of the network size or diameter. In the former,

an Extend-ID mechanism is used to eliminate a corrupted leader, in which case the

bits of a message may increase to unbounded length. While in the latter, the author

implicitly uses the network size by implementing a synchronizer requiring the knowl-
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edge of upper bound on N . Recently, many papers have considered leader election on

asynchronous networks. Solutions proposed by Datta et al. in [29, 30] and Altisen et

al. in [2] assume a distributed unfair daemon and have a stabilization time in O(N)

rounds as well as a space complexity of O(logN) bits per node. As stabilization time

is not O(D), these are not time optimal.

In this section, we introduce a GUAS leader election algorithm via a feedback

interconnection of the building blocks in aggregate computing, that is time optimal,

in the sense that its stabilization time is O(D), with a space complexity of O(logN)

bits per node. This space complexity is asymptotically optimal since a node needs to

store its own ID using O(logN) bits, and the message complexity of our algorithm

is O(DE). Inspired by [8], while running a slightly different Bellman-Ford algorithm

with IDs, our algorithm estimates the diameter of the network simultaneously, and

thus no prior knowledge of the network is needed. Like most feedback systems, our

algorithm has one free design parameter that defines certain important performance

attributes. Too large a value will accelerate convergence but impair resilience by

delaying recovery from loss of the current leader. Too small a value will improve

resilience but make convergence slower or even lead to multiple leaders. Moreover,

any synchronous algorithm can be made to run on an asynchronous network as long

as it requires every node to send messages to all its neighbors at each time step. As

our algorithm obeys this property, it can be applied to an asynchronous network by

using a simple synchronizer.

Section 5.3.1, makes some important definitions and assumptions which will be
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used for the stability proof later. In Section 5.3.2, we give a formal description of our

leader election algorithm. In Section 5.3.3, we first demonstrate the resilience of the

leader election algorithm by upper bounding the time on recovering from transient

perturbations, and then prove its GUAS. Section 5.3.4 validates our results through

simulations.

5.3.1 Preliminaries

We consider an undirected graph G = (V,E), with V = {1, 2, ..., N} the set of

nodes, E the set of undirected edges. We assume the index of a node represents its

ID and also reflects its priority. A node with a lower ID has a higher priority, in that

node i has a higher priority than node i+1. The goal of our leader election algorithm

is to elect the node with the highest priority to be the single leader in the graph. An

edge indicates the existence of communication link between nodes and, we call node

i a neighbor of node j if there is an edge between i and j. We define N (i) as the set

of all neighbors of node i. We assume each edge length is 1.

Suppose node 1 is the only source in the graph, define di as the shortest

distance from node i to the source. Then di for all i ∈ V obeys the recursion [58]:

di =


0, i = 1

min
k∈N (i)

{dk + 1}, i 6= 1

(5.11)

Based on (5.11), we introduce the following definition.

Definition 5.3. A k that minimizes the right hand side of (5.11) is a true constraining

node of i. As there may be two neighbors k and l of i such that dl = dk, a node may



146

have multiple true constraining nodes. The set of true constraining nodes of i is

defined as C(i). Moreover, the true constraining node of node 1 is itself.

Further, we define the following related definition.

Definition 5.4. For a connected graph G, consider any sequence of nodes such that

the predecessor of each node is one of its true constraining nodes. Define D(G), the

effective diameter of G, as the longest length such a sequence can have in G. It follows

D(G) ≤ D with D the diameter of G.

5.3.2 Algorithm

We give a formal description of our leader election algorithm in this section.

The block diagram of the leader election algorithm is shown in Figure 5.5. It uses

a feedback interconnection comprising three building blocks in aggregate computing,

which are themselves distributed algorithms.

Before providing details of this algorithm we summarize the basic approach. A

node i, is attached to the leader estimated as being nearest to it. A leader is attached

to itself. The distance estimates are obtained using an ABF like algorithm. Node

i carries the diameter estimate Di of the sub-network of the nodes attached to the

same leader as itself. With a design parameter K, a leader relinquishes its status if

it finds a neighbor j that is attached to a higher priority node within KDj + 1 hops

from j. If no such neighbor exists then it assumes or retains the role of a leader.

It is this diameter estimate based election strategy that endows the algorithm

with resilience. Thus suppose a leader is lost. Each of its neighbors is thereafter
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constrained by others. Their distance estimates keep increasing until at least one

node, i, is unable to find a neighbor j which is within KDj + 1 hops from the leader

it is attached to. This node i then becomes a leader.

In Figure 5.5 MABF block is a modified adaptive Bellman-Ford algorithm. It

has the dual role of determining current leaders and obtaining distance estimates of

nodes attached to it. The C block collects diameter estimates. The B-block is a

G-block that broadcasts this diameter estimate.

5.3.2.1 The MABF block

The MABF block in the forward path is a variant of the G block in aggregate

computing, and is used to estimate the shortest distance of each node from its nearest

source (leader). As introduced in Section 5.3.1, the node ID, represented by node

index, is unique and cannot be falsified. Further, we define σi(t) as the estimated

leader ID of node i, referring to the node ID that i believes to be the leader at time t

and σi(t) can be corrupted under perturbations. The purpose of leader election is to

elect the highest priority node as the unique leader, i.e., σi(t) = 1 for all i ∈ V and

t ≥ T with some finite T .

More specifically node i is a current leader if σi(t) = i. Furthermore i is

attached to a leader j if σi(t) = j.

In MABF, there is first an implicit selection of whether a node i should be a

leader. This done by seeing if: (i) i has a neighbor j that carries a distance estimate

(hop count) d̂j that is within KDj(t) + 1 hops from the leader it is attached to; and
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Figure 5.5: Block diagram of the leader election algorithm

(ii) if this leader has a higher priority than i. Specifically this is equivalent to seeing

whether a valid set of neighbors of i, Vi(t) defined below is empty. To define Vi(t), we

first define Wi(t) comprising the neighbors of i whose distance estimates are within

a certain range:

Wi(t) = {j ∈ N (i) | d̂j(t) ≤ g(Dj(t))} (5.12)

where g(Di(t)) = KDj(t)+1 with K ≥ 1, and Dj(t) is j’s effective diameter estimate

which is defined in Section 5.3.2.3. Then the valid set Vi(t) comprises members j of

Wi(t) that carry the smallest σj(t) lower than i :

Vi(t) = {j ∈ Wi(t) | σj(t) = min
l∈N (i)

{σl(t)} and σj(t) < i} (5.13)

If Vi(t) is empty, then i becomes a leader. Otherwise it cannot be one, and will attach

itself to the leader one of the members of Vi(t) is attached to. This neighbor also
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becomes the constraining node of i used to update its distance estimate d̂i(t), and is

a member of Vi(t) that carry the smallest distance and the largest diameter estimate.

Thus the constraining node is a member of Ṽi(t) defined below. Define V̄i(t) as the

set comprising nodes from Vi(t) that have the smallest distance estimate at time t:

V̄i(t) = {l ∈ Vi(t)|l = arg min
j∈Vi(t)

{d̂j(t)}}, (5.14)

and

Ṽi(t) = {l ∈ V̄i(t)|l = arg max
j∈V̄i(t)

{Dj(t)}}. (5.15)

Then each node updates its distance estimate according to:

d̂i(t+ 1) =


d̂j(t) + 1 Vi(t) 6= ∅, j ∈ Ṽi(t)

0 Vi(t) = ∅.

(5.16)

We provide a definition a part of which mirrors the definition of constraining nodes

in ABF.

Definition 5.5. Define j in the first case of (5.16) as the current constraining node

ci(t+ 1) of i at time t+ 1. Further at t+ 1, if the second case is used then i is its own

current constraining node. We define Ci(t) as the set of nodes taking i as the current

constraining node at time t except i itself.

Node i is elected as a leader if distance estimates of all its neighbors are

greater than g(D(t)) with D(t) their effective diameter estimates, or the neighbors

having distance estimates lower than g(D(t)) all carry estimated leader IDs with lower

priority, and i is prevented from being a leader if there exists a neighbor of i with a
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distance estimate lower than g(D(t)) and an estimated leader ID with higher priority.

σi(t+ 1) =


i ci(t+ 1) = i

σj(t) ci(t+ 1) = j

(5.17)

Finally as explained in the foregoing, the set of leaders (sources) set at time t is

defined as

S(t) = {i | σi(t) = i and d̂i(t) = 0}. (5.18)

5.3.2.2 The C block

The C block collects and sends to each source its current estimated effective

diameter as the following:

ri(t+ 1) = max{d̂i(t+ 1), {rj(t)|j ∈ Ci(t+ 1)}} (5.19)

with Ci(t) defined in Definition 5.5.

5.3.2.3 The B block

The B block is a G block broadcasting the estimated effective diameter from

each source to nodes attached to it. Each node updates its effective diameter estimate

to the value held at its current constraining node:

Di(t+ 1) =


ri(t+ 1) ci(t+ 1) = i

Dj(t) ci(t+ 1) = j

(5.20)

where ci(t) is defined in Definition 5.5.
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5.3.3 Global uniform asymptotic stability

We now prove the global uniform and asymptotic stability of the leader elec-

tion algorithm described in Section 5.3.2, while bounding the time required for its

convergence. Throughout the section, we shall use the following assumptions.

Assumption 9. Graph G = (V,E) is connected and undirected, t0 = 0 is the initial

time, di, N (i), C(i), d̂i(t), ci(t), ri(t), Di(t), σi(t), g(D) = KD + 1 with K ≥ 1 are

defined as in Section 5.3.2, and for all i ∈ V , the quantities d̂i(0), ri(0), Di(0) are

non-negative integers.

Notice that this last assumption is not restrictive, since the algorithm is only

able to produce non-negative values for those quantities, hence any negative value

can be easily recognised as spurious.1 In general, however, we cannot assume that

σi(0) is positive (nor integer), since under certain transient perturbations (e.g., node

crashes or is corrupted by an adversary), some node may carry a fake ID, i.e., for

i ∈ V , σi(0) = k /∈ V . However, we can prove that the influence of incorrect starting

values tends to decay in favour of the values produced from existing nodes: More

precisely, that estimates on unrooted nodes (i.e., whose estimates depend on starting

values) tend to worsen as time passes, until they are finally discarded. In our proof,

we only consider the transient perturbations to be a node corruption, but it is readily

verified that our algorithm works for node crashes. Suppose in this case node j is a

crashed node, then j /∈ V .

1By the same reasoning, we could also assume that d̂i(0) ≤ g(Di(0)) (but it is not needed
in the proofs).
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Definition 5.6 (Unrooted Nodes). Define the set of unrooted nodes U(t) as U(0) = V ,

and

U(t+ 1) = {i ∈ V |i 6= ci(t+ 1) ∈ U(t)}.

In other words members U(t+1) comprises non-source nodes constrained by members

of U(t). Let L(t) = {σi(t)|i ∈ U(t)} be the set of unrooted leaders, and Uk(t) be the

set of unrooted nodes with leader k:

Uk(t) = {i ∈ U(t)|σi(t) = k}.

Furthermore, define

d̂kmin(t) = min{d̂i(t)|i ∈ Uk(t)},

Dk
max(t) = max{Di(t)|i ∈ Uk(t)}.

We first show that the set of unrooted leaders cannot grow.

Lemma 5.3.1 (Unrooted Leader Set’s Nonincrease). Consider (5.12-5.20) under

Assumption 9 and Definition 5.6. The set of unrooted leaders cannot expand over

time, i.e. obeys L(t+1) ⊆ L(t). Furthermore, leaders σi(t) of rooted nodes i ∈ V \U(t)

are in V .

Proof. We proceed by induction on t. Suppose j ∈ L(t + 1). From Definition 5.6,

there exists i ∈ U(t + 1) such that j = σi(t + 1). Thus from definitions 5.6 and 5.5,

there exists a k, i 6= k = ci(t+ 1) ∈ U(t) such that σk(t) = j. Then by Definition 5.6,

j ∈ L(t), proving the first part of the theorem.

For the second part, observe from Definition 5.5 and Defintion 5.6 that the

constraining node of i ∈ V \ U(t + 1) can only be such that either ci(t + 1) = i
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or ci(t + 1) = j /∈ U(t). In the former case, σi(t + 1) = i ∈ V . In the latter,

σi(t+ 1) = σj(t) which is in V by the inductive hypothesis.

We next provide a lemma that helps show that the unrooted set decays.

Lemma 5.3.2 (Unrooted Decay). Let t ≥ 0 and k ∈ L(t). Then, d̂kmin(t) ≥ d̂kmin(0)+t

and Dk
max(t) ≤ Dk

max(0).

Proof. We proceed by induction on t. For t = 0 the hypothesis is trivially true. Thus

assume that t > 0 and i ∈ Uk(t). By Lemma 5.3.1, k ∈ L(0) hence d̂kmin(0), Dk
max(0)

are well-defined. By definition of unrooted node j = ci(t) ∈ U(t−1), by the algorithm

definition σi(t) = σj(t−1) = k, thus j ∈ Uk(t−1). Thus Di(t) = Dj(t−1) ≤ Dk
max(0),

and d̂i(t) = d̂j(t− 1) + 1 ≥ d̂kmin(0) + (t− 1) + 1, concluding the proof.

Combining the monotonic progression of d̂kmin(t) and Dk
max(t) in Lemma 5.3.2

with the algorithm restriction that d̂i(t) ≤ g(Di(t)), we obtain both that the impact

of fake ID, k ∈ L(0) but k /∈ V disappears after a time T̂ (Lemma 5.3.3), and that

underestimates for the correct leader (w.o.l.g., assume the existing highest priority

node in the network is node 1) disappear after a time depending on the node distance

(Lemma 5.3.4).

Lemma 5.3.3 (Fake IDs Decay). Let:

T̂ = 1 + max{g(Dk
max(0))− d̂kmin(0)|k ∈ L(0) with k < 1}.

Then σi(t) ∈ V for every node i ∈ V and t ≥ T̂ .
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Proof. Assume by contradiction that i ∈ V , t ≥ T̂ are such that σi(t) = k ∈ V . By

Lemma 5.3.1, k ∈ L(0) and i ∈ Uk(t) since k /∈ V . By Lemma 5.3.2 and definition of

d̂kmin(t):

d̂i(t) ≥ d̂kmin(t) ≥ d̂kmin(0) + t ≥ d̂kmin(0) + T̂ (5.21)

> d̂kmin(0) + g(Dk
max(0))− d̂kmin(0) (5.22)

= g(Dk
max(0)) (5.23)

By Lemma 5.3.2 and definition of D̂k
max(t):

Di(t) ≤ D̂k
max(t) ≤ D̂k

max(0)

Thus d̂i(t) > g(Di(t)), which is a contradiction by the third bullet of (2.2).

We next show that a node attached to the desired leader must eventually have

an underestimated distance estimate.

Lemma 5.3.4 (Underestimates Decay). For every i ∈ V and t ≥ 0 such that σi(t) =

1, we have d̂i(t) ≥ min(di, t).

Proof. Assume that i ∈ V , t ≥ 0 are such that σi(t) = 1. If i ∈ U(t), then:

d̂i(t) ≥ d̂1
min(t) ≥ d̂1

min(0) + t ≥ t.

If i ∈ V \ U(t), then there is a sequence i = i0, . . . , ik = 1 such that ci`(t− `) = i`+1

and c1(t − k) = 1, hence d̂i(t) = k. This sequence is a path on the graph, thus its

length has to be ≥ di, concluding the proof.
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As soon as the impact of starting values has sufficiently decayed (as detailed in

the previous lemmas), correct stable estimates flow outwards from the source bounded

by source diameter estimates (Lemma 5.3.6), while those diameter estimates flow

inwards bounded by the stabilization of distances (Lemma 5.3.5).

Henceforth we are concerned with nodes attached to the desired leader 1. The

next lemma speaks to how the diameter estimate at 1, evolves.

Lemma 5.3.5 (Diameter Collection). With C(i) and ci(t) defined in Definition 5.3

and 5.5, assume that Tx integer 0 ≤ x ≤ D(G)−1 is such that every device i ∈ V with

di ≤ x stabilizes to σi(t) = 1, d̂i(t) = di and ci(t) ∈ C(i) for t ≥ Tx. Then D1(t) ≥ x

for t ≥ Tx + x.

Proof. Let i0 ∈ V be any node such that di0 = x, and let i1, . . . , ix = 1 be a shortest

path from it to the source, so that i`+1 ∈ C(i`) for l ∈ {0, · · · , x − 1}. We prove by

induction on k ≤ x that the diameter collection rik(t) ≥ x for t ≥ Tx + k. For k = 0,

it holds since:

ri0(t) = max{d̂i0(t), {rj(t− 1)|j ∈ Ci0(t)}} (5.24)

≥ d̂i0(t) = di0 = x (5.25)

For k > 0, it holds since:

rik(t) = max{d̂ik(t), {rj(t− 1)|j ∈ Cik(t)}} (5.26)

≥ rik−1
(t− 1) ≥ x (5.27)

Thus, r1(t) = rix(t) ≥ x for t ≥ Tx + x. Since 1 is its own constraining node,

D1(t) = r1(t) ≥ x as well, concluding the proof.
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The now on how the D1(t) is broadcast.

Lemma 5.3.6 (Diameter Broadcast). With C(i) and ci(t) defined in Definition 5.3

and 5.5, assume that Tx ≥ T̂ defined in Lemma 5.3.3 is such that σ1(t) = 1, d̂1(t) = 0

and D1(t) ≥ x for t ≥ Tx. Then every i ∈ V with di ≤ g(x) stabilizes to σi(t) = 1,

d̂i(t) = di, ci(t) ∈ C(i) and Di(t) ≥ x for t ≥ Tx + di.

Proof. We proceed by induction on di. If di = 0, then i = 1 is the source hence

σi(t) = 1, d̂i(t) = di = 0 for t ≥ Tx holds by hypothesis.

Suppose now that di > 0, and let t ≥ Tx + di, j ∈ C(i) so that dj = di − 1.

By inductive hypothesis σj(t− 1) = 1, d̂j(t− 1) = dj, Dj(t− 1) ≥ x. Since dj + 1 =

di ≤ g(x) ≤ g(Dj(t − 1)), j ∈ Wi(t − 1) defined in (5.12) is not discarded from the

set of possible constraining nodes at the first step. By Lemma 5.3.3 and Tx ≥ T̂ ,

there are no k ∈ N (i) with σk(t − 1) /∈ V . It follows that j has maximal priority

σj(t − 1) = 1, hence it is not discarded at the second step, i.e., j ∈ Vi(t − 1), and

∀k ∈ Vi(t− 1), σk(t− 1) = 1. From (5.17), σi(t) = 1.

By Lemma 5.3.4, every k ∈ N (i) satisfies

d̂k(t− 1) ≥ min(dk, t− 1) ≥ d̂j(t− 1) = dj

and thus j is not discarded at the third step, i.e., j ∈ V̄i(t−1). Assume ci(t) the current

constraining node of i is k, then it follows d̂i(t) = d̂k(t−1) + 1 = dk + 1 = dj + 1 = di,

and ci(t) = k ∈ C(i). Letting X 3 j as the set of nodes that are not discarded at the

final step, i.e., the set Ṽi(t− 1). From (5.20), it follows that

Di(t) = max{Dk(t− 1)|k ∈ X} ≥ Dj(t− 1) ≥ x.
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Combining the last two lemmas, we can finally recursively characterise the

overall convergence time Tx for nodes at distance x (Theorem 5.3.7).

Definition 5.7 (Discrete Inverse). We define g−1(D) =
⌈
D−1
K

⌉
, which is the smallest

number x such that g(x) = Kx+ 1 ≥ D.

Finally we characterize convergence and the time to converge.

Theorem 5.3.7 (Convergence). Let Tx for x ≤ D(G) − 1 be recursively defined as

T0 = T̂ with T̂ defined in Lemma 5.3.3,

Tx = Tg−1(x) + g−1(x) + x.

Then for t ≥ Tx and i ∈ V such that di ≤ x, we have that σi(t) = 1 and d̂i(t) = di.

Proof. We prove the thesis by induction on x. If x = 0 and t ≥ T̂ , σ1(t) ≥ 1 by

Lemma 5.3.3, and hence σ1(t) = 1 and d̂1(t) = 0 concluding the inductive base case.

Suppose now that the thesis holds for every y < x, and in particular for

g−1(x) < x. By inductive hypothesis, devices up to g−1(x) distance are stable for

t ≥ Tg−1(x), and then by Lemma 5.3.5 D1(t) ≥ g−1(x) for t ≥ Tg−1(x) + g−1(x). We

can then apply Lemma 5.3.6, obtaining that devices up to x distance are stable for

t ≥ Tg−1(x) + g−1(x) + x = Tx, concluding the proof.

Notice that the bound above is strict e.g. whenever σi(0) > 1 for all i ∈ V \{1},

and r1(0) = D1(0) = 0. Furthermore, we can approximate the bound through a closed
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form formula.

Tx = Tg−1(x) + g−1(x) + x (5.28)

= T̂ + x+ 2
∞∑
k=1

g−k(x) (5.29)

= T̂ + x+ 2
∞∑
k=1

⌈
x−

∑i<k
i=0 K

i

Kk

⌉
(5.30)

In case K = 1, then
⌈
x−

∑i<k
i=0 K

i

Kk

⌉
= x− k for x ≥ k and thus:

Tx = T̂ + x+ 2
x∑
k=1

(x− k) = T̂ + x+ x(x− 1) = T̂ + x2

which is quadratic on x. However, if K ≥ 2, letting L = dlogK(x(K − 1) + 1)e (the

first term for which the terms in the summation are zero):

Tx = T̂ + x+ 2
∞∑
k=1

⌈
x−

∑i<k
i=0 K

i

Kk

⌉

= T̂ + x+ 2
∞∑
k=1

⌈
x− (Kk − 1)/(K − 1)

Kk

⌉

= T̂ + x+ 2
L−1∑
k=1

⌈
x

Kk
− 1− 1/Kk

K − 1

⌉

≤ T̂ + x+ 2L+ 2
L−1∑
k=1

(
x

Kk
− 1− 1/Kk

K − 1

)
= T̂ + x+ 2L+ 2x

1
KL − 1

K
1
K
− 1

− 2(L− 1)

K − 1
+

2( 1
KL − 1

K
)

(K − 1)( 1
K
− 1)

= T̂ + x
2−KL −KL−1

KL −KL−1
+ 2L

K − 2

K − 1
+

2

K − 1
+

2(1−KL−1)

(K − 1)(KL−1 −KL)

≤ T̂ + 3x+ 2L+ 4

In fact, if K = 2, Tx ≤ T̂ + 3x + 4, which is linear in x. We can also notice that if

D is the maximum overall Di(0) value, T̂ ≤ 1 + g(D) = KD + 2, so that for K = 2,
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Tx ≤ 2D + 3x + 6. Moreover, the time to convergence derived above is independent

of the initial time t0 = 0, and thus it proves the global uniform and asymptotic

convergence of the leader election algorithm.

5.3.4 Simulations

In this section, we confirm our previous results through simulations. We first

investigate the global uniform and asymptotic stability of the algorithm, and compare

its performance with the algorithm proposed by [30]. In the simulations, 500 nodes

are randomly distributed in a 4× 1 field, communicating with a 0.25 unit disc. Each

node has about 20 neighbors and communicates synchronously, and each node ID is

the same as its index ranging from 1 to 500. For our algorithm, the initial conditions

are set as the follows, ∀i ∈ V , d̂i(0) = ri(0) = Di(0) = 0, and σi(0) is uniformly

distributed between 1 to 500. The simulation is run 10 times.

We run our algorithm with K = 1, K = 2 and K = 3 under the same initial

conditions. The results are shown in Figure 5.6a. D(G) ranges from 11 to 19 for those

10 trials. Compared with K = 2 and K = 3, our leader election algorithm will take

a longer time (115 rounds) to converge with K = 1, which verifies our result that in

this case the time complexity is O(D(G)2). With K = 2 or K = 3, our algorithm

has a much better performance. The average time to convergence is 36 rounds and

28 rounds for K = 2 and K = 3 respectively. Figure 5.6b depicts the performance of

Datta’s algorithm. The average time to convergence in this case is 41 rounds, which

is worse than our algorithm with K = 2 or 3. Moreover, Datta’s algorithm has more
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Figure 5.6: Comparison of convergence time between our algorithm and Datta’s al-

gorithm without perturbations
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Figure 5.7: Comparison of convergence time between our algorithm and Datta’s al-

gorithm with perturbations

frequent oscillations.

We next compare their resilience under the same setup as shown above. In

this case, we run our algorithm with K = 2 and 3. The transient perturbation is as

the following: With initial conditions unchanged from the perturbation free case, for

i = 50 to 100, σi(10) = 0.5. That is, during the process of convergence, 51 nodes are

corrupted by a fake ID with the highest priority.

Figure 5.7a demonstrates the results by our algorithm. With K = 2, states

of nodes will recover and converge with 52 rounds on the average for the 10 trials.

It is almost the same as the Datta’s algorithm shown in Figure 5.7b, which will take
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53 rounds. With K = 3, our algorithm outperforms Datta’s as it will take only 40

rounds to converge. An optimal K that achieves the best convergence time under

those transient perturbations remains an interesting problem to be further studied.

5.4 Conclusion

In this Chapter, we have presented an analysis of the error dynamics of state

estimation collection via an open loop G-C combination, as well as a feedback inter-

connection of basis blocks serving for leader election.

According to our analysis, even though individual blocks are proved to be

stable, their compositions may misbehave under perturbations. For example, in a

asynchronous network, the G-C combination have the theoretical potential for ex-

ponential overestimates based on duplicated of data and underestimates based on

data loss. However, the resilience manifested by leader election algorithm holds the

prospect that stable and robust composability can be realized through these basis

blocks.
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CHAPTER 6
CONCLUSIONS AND FUTURE WORK

6.1 Summary

In this thesis, we have presented the robust stability of G block in aggregate

computing and its variants. We prove their global convergence and ultimate bound-

edness under certain structural perturbations. A new technique bounding graph in-

volving shrunken graphs and extended graphs is used in deriving the ultimate bounds.

Specifically, in Chapter 3, we have shown that ABF, GABF and the generalized G

block are GUAS, MPP is GUES, and all these algorithms are ultimately bounded un-

der persistent structural perturbations. Such perturbations mainly refer to changes

in edge values resulting from measurement errors or node mobility.

We have also analyzed two types of compositions of basis blocks in Chapter 5.

The first is an open loop G-C combination, which is used to collect the information

through the network via a spanning-tree aggregation approach. We find that in the

worst case transients can duplicate values leading to exponential overestimates or

can drop values leading to near total loss of information. Finally, we design a leader

election algorithm via a feedback interconnection of basis blocks. This algorithm does

not assume any prior knowledge of the network diameter and is proved to be GUAS

as well as resilient under transient perturbations.
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6.2 Open problems

We now present some future research directions that are a logical extension of

this work.

1. Lyapunov functions for the generalized G-block

In Chapter 4, we have proved the GUAS of the generalized G block without

using a Lyapunov function. Finding a Lyapunov function is an area of future re-

search. Inverse Lyapunov theorems [45] prove that GUAS implies the existence

of a Lyapunov function. Notice that there is a key distinction between standard

inverse Lyapunov theory and that for finite time convergence. For example, ex-

ponential convergence implies that there exists a positive definite Lyapunov

function that is non-increasing and obeys for some T , L(t+T )−L(t) ≤ −αL(t)

where α > 0. On the other hand, discrete time and finite time convergence

GUAS seems to imply that L(t) should instead obey: L(t+T ) ≤ min[L(t)−α, 0].

There is some inverse Lyapunov theory for the finite time convergence of contin-

uous time systems [63], however, inverse theory of the sort is to our knowledge

new, and the Lyapunov function we built for ABF in Section 3.2 satisfies this

new type of inequality.

2. Ultimate bounds and the time to attain these bounds under pertur-

bations including link failures, change of source set and neighborhood

changes.

In Chapter 3 and Chapter 4, ultimate boundedness has been demonstrated for

the generalized G block and its variants but only the perturbations in edge
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lengths. Perturbations like breaks in links, disappearing links and nodes, neigh-

borhood changes and change in the source sets should also be considered. Apart

from clear implications to resilience, both the bounds and the time to attain

them will play an important role in stability analysis of feedback interconnec-

tions.

3. A small gain theorem for closed loop interconnections

In Section 5.3, we have proved the GUAS of a resilient leader election algorithm.

Another approach could be to use variants of the small gain theorem in the clas-

sical stability literature [45], that indirectly take ultimate bounds into account

[41, 42]. Lyapunov functions and finite time convergence of discrete-time dis-

continuous systems will assist in formulating such small gain theory [52, 20]. In

leader election, perpetual source changes may lead to large perturbations in the

distance estimates with correspondingly large ultimate bounds. However, such

large changes also take longer to occur as the sources suppressed or created

must be further away from the previous source set. Thus a small gain type

analysis that relies just on ultimate bounds must be augmented by a small gain

approach utilizing both the ultimate bounds and the time to attain them are

used.
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