After iGEM
Academic Publishing Workshops

Analysis and Visualisation of Gene Expression Data by Dr Jacob Beal
Anastasios Galanis
After iGEM

Jacob Beal
Raytheon BBN Technologies
iGEM Engineering Committee
Content:
- Relating data to biology
- Graphical Presentation
RELATING DATA TO BIOLOGY
Avoid Relative and Arbitrary Units

Example: calibration of fluorescence & OD measurements
- Flow Cytometry: NIST-certified beads, WT, color controls
- Plate reader: fluorescein, Texas Red, cell-like microspheres
- Result: directly comparable MEFL units

[Roederer, ‘02; Wang et al., ‘08; NIST/ISAC, ‘12; Beal et al., ‘12; Castillo-Hair et al., ’16; Beal et al., ‘18, Beal et al.,’20, Beal et al., ‘21]
Think Carefully About Relating Measurement to Biology

Example: estimating cell and molecule counts from plate reader data

- Raw readings include background, even after calibration
- To estimate counts, subtract the background:

$$Cells = (OD - \text{media}) \times \frac{\text{particles}}{OD}$$

$$\frac{MEFL}{Cell} = (a.u. - \text{WT a.u.}) \times \frac{MEFL}{a.u.} \times Cells$$
Why geometric stats?

Complex catalytic reactions
→ multiply many rates:

\[R_{\text{express}} = R_1 R_2 R_3 R_4 R_5 \ldots \]

Central Limit Theorem
→ converge to log-normal!

Gamma distribution bursting also implies geometric stats

[Davidsohn et al., 2015], [Beal, 2017]
Take Advantage of Process Controls

Experimental Controls:
• Is my hypothesis true?
• One control per factor under study
• Best when new data
• Control very close to experiment conditions

Process Controls:
• Should I trust the data?
• One control per assumption in study
• Best when known value
• Control should have minimal relation to experiment conditions
Example of Experimental vs. Process Controls

Experimental Controls:
- GFP

Process Controls:
- GFP
- RFP
- wild type cells
- ERF beads
- media only
- focusing fluid

null transfection
Sanity Check Your Control Values

- Compare to calibrants to ensure instrument linear range
- Compare positive to max number of proteins per cell:
 - E. coli: 2e6
 - Yeast: 6e7
 - Human: 2e9
- Negative control should be much smaller than positive
- Problems with values indicate likely process failure

Example: E. coli negative <1e3, positive >1e4

GRAPHICAL PRESENTATION
Presenting data is just as important as collecting it!

The Visual Display of Quantitative Information

EDWARD R. TUFTE
Core Principles of Data Presentation

• Show the data
• Focus the viewer on data comparison, not graphic design
• Avoid distorting the data
 Principled choice of axis bounds, scale
 Don’t hide bad results
• Present many numbers densely and coherently
• Show both broad overview and fine structure of data
• Serve a clear purpose: e.g., description, exemplification, exploration
• Integrate graphics with statistical and prose descriptions
Applying the Core Principles

Purpose: data exploration

Axis bound:
Ceiling of max data

Meaningful units

Log scale for gene expression

Axis bound:
Floor of min measurable

Focus on comparison

X-offset dots:
dense presentation of fine structure

Bar + error:
broad overview

Bad results visible

Example from iGEM 2018 interlab publication: [Beal et al., '20]
Tell stories in your captions

This is a horse.

What about it?
Tell stories in your captions

Fluorescence per cell after 6 hours of growth.
Tell stories in your captions

Fluorescence per cell after 6 hours of growth, comparing calibrated flow cytometry to estimates using cell count from CFU and microsphere dilution protocols. (LUDOX/water is not shown as the units it produces are not comparable). Microsphere dilution produces values extremely close to the ground truth provided by calibrated flow cytometry, whereas the CFU protocol produces values more than an order of magnitude different, suggesting that CFU calibration greatly underestimates the number of cells in the sample. Bars show geometric mean and standard deviation. Team count per condition provided in Supplementary Data 3 Teams Per Condition.

Key results

Purpose

Anticipating questions

Interpretation
QUESTIONS?
After iGEM
Academic Publishing Workshops

THANK YOU!