
Shrinking the Leap of Faith

Jacob Beal and Tim Shepard

March 30, 2005
UNPUBLISHED DRAFT

Abstract

The Internet is filled with strangers. We observe that
humans cope with a world full of strangers by manag-
ing trust relationships with their acquaintances. On
the Internet, too many strangers are capable of trying
to make a computer’s acquaintance. Direct encoun-
ters between computers, however, are sparse, as are
face-to-face encounters between humans. We sketch
an approach to extending trust based on direct en-
counters, in which buddy relationships formed during
direct encounters are used to vet strangers.

1 The Problem of Strangers

The world of computer networks, like much of daily
life, is filled with strangers, some of whom are trust-
worthy and some of whom are dangerous, whether
through malice or incompetence. Interactions with
strangers are guided by a tension between the com-
peting concerns of safety and openness: too much
openness allows dangerous strangers to victimize you,
too much safety prevents beneficial interactions with
trustworthy strangers.

Currently, there are two main models for trust
used to try to separate trustworthy and dangerous
strangers: Public Key Infrastructure (PKI) and the
leap of faith. Under PKI, trust is distributed from
a small number of commonly held certificate author-
ities, and a computer can verify itself using a cer-
tificate cryptographically signed by a certificate au-
thority. Although elegant, the centralization of the
PKI model makes it highly vulnerable to problems
with certificate authorities and it has not been widely
adopted except in the case of financial transactions
(e.g. most HTTPS usage).

Under the leap of faith model, typified by ssh,
there are no central authorities. Instead, each par-
ticipant keeps its own list of trusted keys. The first
time that a computer is encountered, it presents its

public key, and the recipient must make a leap of faith
that the key represents the computer it was trying to
connect with. Once the leap of faith has been made,
it is possible to check that the same computer is being
encountered, but there is no guarantee that it isn’t a
consistent imposter.

Humans have been dealing with the problem of
strangers for millennia, and the way that human so-
cial networks create and maintain trust relationship
looks more like leaps of faith than PKI. Our work
is informed and inspired by human social networks.
We do not, however, attempt to imitate them closely
because there are significant differences between com-
puters and humans.

We will outline a new approach to the problem of
strangers, inspired by human behavior. First, we ob-
serve a common problem with trust models in which
the computer and the user are confused together,
leading to flawed software. Separating the computer
and the user lets us see that current software does not
take advantage of the ability of computers to meet
one another directly. We then sketch one way that
a computer initiating a transaction might shrink its
leap of faith, given a collection of random buddies
gathered from other computers it has encountered
directly. Finally, we suggest ways that the random
buddy idea might be applied in reverse to shrink the
leap of faith for a computer responding to a transac-
tion request.

2 Separating Computers and

Humans in Trust Models

Computer security thinking often elides together peo-
ple and their computers. This could easily be a bad
habit inherited from dealing with cryptography, in
which it is perfectly reasonable to write paragraphs
like this (Figure 1(a)):

When Alice wishes to send a secret message to

1



Alice Bob

Directory

(a) Common Cryptographic
Model

Alice BobAbacus Bitmunger

Directory

(b) Average Human Experience

Figure 1: When Alice sends a secret message to Bob,
who does she need to trust to keep it secret? As com-
monly described in cryptography, Alice needs only to
trust the directory and Bob, but must do quite a bit
of math. If Alice is an average human, however, she
must also trust her computer Abacus and Bob’s com-
puter Bitmunger to keep the secret, and trust Bob’s
computer to identify him correctly.

Bob, she looks up Bob’s public key in a direc-
tory, uses it to encrypt the message and sends
it off. Bob then uses his private key to decrypt
the message and read it. No one listening in
can decrypt the message. Anyone can send an
encrypted message to Bob, but only Bob can
read it (because only Bob knows Bob’s private
key).[1]

Alice and Bob might be people, computers, or any-
thing at all capable of performing the appropriate
calculations with large numbers. Most people who
use computers, however, are unwilling or unable to
do the math involved. The experience of an average
human with cryptography, therefore, goes something
more like this (Figure 1(b)):

When Alice wishes to send a secret message to
Bob, she types it on her computer, Abacus, and
asks Abacus to send it to Bob. Abacus looks up
a public key for Bob in a directory, then uses
it to encrypt the message and send it to Bob’s
computer, Bitmunger. Bitmunger receives the

(a) First, dire warnings!

(b) Internet Explorer passes the buck

Figure 2: The typical user experience of cryptography
in a web browser (in this case Internet Explorer[3]).
When connecting to a secure site not verified by its
built-in certificate authorities, the browser gives up
and hands over its trust problems to the user.

message and then uses Bob’s private key to de-
crypt it for Bob to read.

In order to understand the trust dependencies in
this situation, we need to explicitly include both com-
puters and humans in the model. If Alice and Bob
perform the algorithms themselves, she can trust that
her message is secret if Bob keeps it secret and if the
directory is accurate.1 As an ordinary user, however,
she must also trust that Abacus does not reveal the
message to anyone and uses a trustworthy directory,
and that Bitmunger can correctly identify Bob and
chooses to reveal the message only to him.

We believe that effective computer security en-
gineering requires analyzing threats with this more
complete model, and that failure to do so leads to

1If the directory is Alice’s own personal address book, she
can be quite certain of its integrity.

2



designs which create insecurity in the interface be-
tween the human and the computer by not taking
their trust relationship seriously.

Current web browsers like Internet Explorer or
Mozilla Netscape are excellent examples of this fail-
ing. When making a secure connection, the browser
hides all cryptographic details from the user as long
as it can verify the server using its set of built-in
trusted authorities. If the server doesn’t use one of
the built-in authorities, however, the browser sim-
ple punts the problem to the user, who must decide
whether to make a massive leap of faith based only
on a brief hexadecimal garble (Figure 2). Internet
Explorer sums up the problem elegantly as it dumps
the problem in the user’s lap:2

... a single bad Certificate Authority com-
pletely negates the effectiveness of the entire
system of Internet security.[3]

Being told that the fate of the entire Internet rests
upon their belief that a particular wad of uninter-
pretable characters is correct, is it any wonder that
many people choose either to completely ignore the
warnings or to avoid Internet transactions altogether?
We need to consider the security situation from the
perspective of Abacus and ask how it can manage to
recognize Bitmunger without the help of a certificate
authority.

3 How Computers Meet

Let us define two computers to have met if they can
reliably recognize communications from one another
in the future. Public key cryptography is one way
to accomplish this: if Abacus and Bitmunger give
each other their public keys, then Bitmunger can use
its private key to sign a message so that Abacus can
verify it’s really from Bitmunger.3 Meeting is not the
same as knowing identity; Abacus cannot generally
verify what computer it is talking to, only whether
it’s the same computer that gave it a particular public
key.

There are only three ways that Abacus can meet
Bitmunger (Figure 3):

• Direct Encounter: Abacus and Bitmunger can
meet directly when they are on the same commu-
nications medium, such that they can communi-
cate directly, without any intermediaries. For

2Found in the text box shown in Figure 2(a).
3or from a machine that has Bitmunger’s private key.

example, they might be on the same ethernet
wire, or communicate wirelessly via infrared or
radio.

• Introduction by a 3rd Party: Abacus can
meet Bitmunger indirectly by means of either
another computer (e.g. PKI), or a human (e.g.
a PGP key-signing party or a buck-passing web
browser). In this case, Abacus’ connection to
Bitmunger is at most as reliable as the weakest
link in the chain of trust connecting it to Bit-
munger.

• Cold Call: Abacus may have no direct or in-
direct connection to Bitmunger, in which case
it must simply fling a packet addressed to Bit-
munger into the Internet and hope that the pub-
lic key in the response originates with Bitmunger
and not an imposter. This is the situation that
currently causes web browsers to decide instead
to pass the buck.

The sparseness of direct encounters distinguishes
them from cold calls, and makes them difficult for
an attacker to accomplish. This critical observation
allows us to capture a feature of human social rela-
tionships, that encountering somebody face-to-face is
inherently special and more trustworthy than encoun-
tering somebody indirectly. Direct encounters break
the all-to-all connectivity of the Internet and give a
basis for forming relationships with strangers — if
nothing else, I know that we two were at least really
in the same place at the same time.

The leap of faith is always there, but the more di-
rect the connection, the harder it is for a malicious
machine to exploit it. Although direct encounters
are mostly unused at present, they are the smallest
leap of faith, and we will use them to shrink the leap
needed during a cold call.

4 Shrinking the Initiator’s

Leap of Faith

Abacus may have to make a large leap of faith as
an initiator when it makes a cold call to Bitmunger,
which it has never previously met. For example, Bit-
munger might be Alice’s home computer, which she
is trying to SSH into while she is at a conference, us-
ing her colleague’s laptop Abacus and connected to
the Internet via an open wireless access point. Since
it’s not her computer, Abacus is unlikely to have ever
previously met Bitmunger. Bitmunger is far away, so

3



Abacus

Bitmunger

Alice
Computron

Internet

Cold Call Direct Encounter 3rd Party Introduction

Figure 3: There are three ways Abacus can meet Bit-
munger: a direct encounter (e.g. direct wireless link),
introduction over secure channels by a third party
(human or computer), or a “cold call” of insecure
traffic through the Internet. The trustworthiness of a
direct encounter depends only on Bitmunger, an in-
troduction also depends on the introducer, and a cold
call depends on every server on the path between Bit-
munger and Abacus.

Abacus cannot contact it directly, and third party
introduction is unlikely since PKI probably doesn’t
cover Bitmunger and Alice probably doesn’t know its
key. That leaves a cold call as the only means of in-
troduction, and it must go through the dubious first
hop of the unvetted access point, which could easily
initiate an man-in-the-middle (MITM) attack, pre-
tending to Abacus that it is Bitmunger in order to
intercept traffic between Alice and Bitmunger (Fig-
ure 4).4

When Abacus makes a cold call to initiate a trust
relationship with Bitmunger, assuming they have not
previously met, it takes an identifier (e.g. a URL,
server name, or IP address), resolves it, and sends
a message requesting a relationship. If a third ma-
chine, Computron, is on the path taken by a mes-
sage either during resolution of the identifier or by
Abacus’ message to Bitmunger, it can do an MITM
attack against Abacus and substitute itself for Bit-
munger in the transaction, possibly initiating its own
connection with Bitmunger in order to perfectly sim-
ulate the transaction. Computron thus compromises
the secure channel between Abacus and Bitmunger
for its own purposes.

Routing and resolution services in the big pipes of
the Internet are difficult to compromise, so the great-
est threat for MITM attacks is at the edges, where
administration is more lax and attackers can easily
introduce their own computers to the network. Thus

4This is precisely the situation that wags at security con-
ferences like to use to humiliate their colleagues.

Alice Abacus

Wireless Access Point

Bitmunger

Internet

Figure 4: Abacus is faced with a problem. Alice has
asked it to connect to Bitmunger, a server it has not
met and can only be introduced to via a cold call me-
diated through an unfamiliar wireless access point.
The access point is in an excellent position to play
man-in-the-middle, pretending to be Bitmunger in or-
der to intercept traffic between Alice and Bitmunger.

the majority of the threat can be reduced to three
scenarios: first-hop MITM, last-hop MITM, and bad
references. In the first-hop scenario, Computron links
Abacus to the Internet, and thus can always intercept
messages since all traffic in both directions passes
through it. The last-hop scenario is the same, ex-
cept that Computron is between the Internet and Bit-
munger. In the bad reference scenario, on the other
hand, Computron does not interfere with routing, but
instead tricks Abacus into choosing to send messages
to it instead of Bitmunger.

4.1 Random Buddy Verification

Abacus can resist first-hop MITM attacks (e.g. the
Alice conference scenario) by leveraging the ability of
computers to meet directly. Although most comput-
ers are sessile and directly meet only a few machines
during their lifetime, laptops and other mobile de-
vices, may travel frequently and directly encounter
many other computers in places like airports, hotels,
coffee-shops, and family gatherings.

Number of encounters per computer is likely to be
distributed as a power law, derived from the power
law distribution of human encounters,[2] but that
same scale-free network makes it likely that any ses-
sile or encounter-poor computer can either directly
encounter or be introduced to a trustworthy mobile
device which directly encounters many computers.

If the mobile device takes advantage of direct en-
counters to meet a few of these strangers, then it can

4



build a collection of random buddies with whom it
can establish secure channels. Further, it can share
its wealth by introducing a few of these random bud-
dies to the sessile computers it encounters.

When Abacus makes a cold call to meet Bitmunger,
then, it can shrink its leap of faith with the aid of a
few of its random buddies (Figure 5). Abacus es-
tablishes secure connections to its buddies Deadbeef,
Electro, and Frotz, which are likely to be connecting
to the Internet through servers other than Compu-
tron, and asks them to make cold calls to Bitmunger.
If they report back the same key that Abacus has
received from Bitmunger, then Abacus knows that,
unless all of the buddies it chose are in league with
Computron or connecting to the Internet through it,
that the key it has received really is from Computron,
thus heading off first-hop man-in-the-middle attacks.

If not all of the buddies report, or if not all of the
reported keys are the same, things are more compli-
cated, since there are many possible reasons for the
difference, including first-hop MITM, lying buddies,
and discrimination on the part of Bitmunger. The
cause of the disagreement and whether it is due to
malice or accident is not something which Abacus
can hope to discover reliably, but maintaining esti-
mates of the trustworthiness of its buddies may give
good indications as to the situation. Certainly, how-
ever, Abacus can inform Alice of the particulars of
the situation, allowing her to make a more informed
decision as to whether she wants to go ahead and
communicate anyway.

4.1.1 Threats

We have identified the following threats to verifica-
tion via random buddies:
• Last-Hop MITM: Diverse paths through the In-

ternet do not do any good if the only way to reach
Bitmunger is through Computron.

• Bad Reference MITM: If Computron can trick
either Alice or Abacus into choosing to initiate a
relationship with it instead of Bitmunger, then
random buddies do not help, since Abacus will
send them to the wrong location as well.

• Poisoning the Random Buddy Pool: If too
many of Abacus’s random buddies are malicious
(e.g. a large set of fake identities generated by
Computron), the system breaks down. If Abacus
chooses a set of verifying buddies which are in col-
lusion with Computron, the buddies can persuade
Abacus that Computron really is Bitmunger. Al-
ternately, if one of Computron’s identities is cho-

Leap!

Abacus

Bitmunger

Bitmunger

Abacus

Buddies

Secure Communication

Key

Hello!

Hello!
Key

Figure 5: When Abacus initiates a relationship with
Bitmunger, it makes a leap of faith in deciding to
accept the key claiming to originate from Bitmunger.
Abacus can shrink this leap of faith by asking a few
random buddies to get keys from Bitmunger as well,
since its buddies will likely take substantially different
paths to get to Bitmunger.

sen as a verifying buddy, it can return a false key,
casting doubt on a legitimate connection.

• Monoculture Buddies: If Abacus’ buddies
have too little topological diversity, it cannot gain
an independent perspective by asking them to ver-
ify Bitmunger. A single buddy in an office filled
with computers is just as valuable as its 100 others
all sharing the same gateway to the Internet.

• Gaming the System: Computron can be as-
sumed to know the code which Abacus is running,
and can attempt to game its way into adding as
many fake buddies as possible in a short time, be-
ing the most attractive buddies in the pool, or
more trustworthy than they should appear. This
might be diffused by having the system parame-
ters wander chaotically through a wide range of
plausible settings.

• DDoS threat: An attacker which gathers a large
number of buddies might use them to amplify its
denial of service attacks by asking them all to ver-
ify the same server. Limiting the rate at which
buddies are willing to perform verifications should
defuse this threat while not impeding legitimate
users.

5



?
Bitmunger

Bitmunger

Buddies

Secure Communication

Key

Hello!

Leap!

Bitmunger

Abacus

Abacus T
IM

E

Request

Buddies
?

Figure 6: When Abacus responds to Bitmunger’s re-
quest to initiate a relationship, it has less leverage
than when it is the initiator, since Bitmunger’s iden-
tity might be evanescent. When Abacus is the initia-
tor, on the other hand, Bitmunger can be assumed to
be a valid identity since Abacus is choosing to connect
to it. Random buddies might be deployed, either Bit-
munger or Abacus, to try to establish that Bitmunger
is a real identity, but the mechanism is still unclear.

5 Shrinking the Responder’s

Leap of Faith

When Abacus is responding to a cold call from Bit-
munger rather than initiating it, it is faced with a
different type of threat. Now the threat is that Bit-
munger may be an evanescent identity generating un-
wanted traffic (e.g. DoS attacks or spam). Previ-
ously, Bitmunger could be assumed to be a real iden-
tity since Abacus chose to connect to it. Since fake
identities are easy to come by, this is a much more
difficult problem, and we do not yet have a clear so-
lution.

We suspect, however, that a deployment of the ran-
dom buddy system, as in the initiator case, might be
able to shrink the leap of faith (Figure 6), as a di-
verse collection of Abacus and Bitmunger’s random
buddies could be used to establish the reality of Bit-
munger through methods such as:

• IP address diversity. It’s harder to fake many
different addresses than a single one, so Abacus

might to return routability tests on a group of
buddies willing to vouch for Bitmunger.

• Topological/geographic diversity. Similarly,
buddies willing to vouch for Bitmunger which
Abacus’s buddies can verify are near them in dif-
ferent parts of network or physical space gives
credibility to Bitmunger’s claim to be real.

• Distributed Reputation. With some sort of
distributed reputation system, Bitmunger might
have to work to establish itself as legitimate in
the reputation system before Abacus is willing to
trust it.

• Friend-of-a-Friend relationships. A chain of
buddies trusted by Abacus might lead to a com-
puter willing to vouch for Bitmunger.

6 Final Thoughts

We have observed something novel and highly under-
exploited in today’s Internet: there is something spe-
cial about being able to communicate directly with
another computer. Because a computer can only
communicate directly with a few other computers at
any given time, this sparseness may provide a basis
on which to build trust with strangers.

A few mobile computers carried by highly mobile
humans can encounter many other computers, gen-
erating a scale-free network of relationships in which
every computer can expect to be introduced to a di-
verse collection of recognizable strangers.

Although we do not present complete solutions to
the problem of extending trust to strangers on the
Internet, we hope we are successful in suggesting an
architectural direction, in which computers become
acknowledged participants in the trust network.

References

[1] RSA Laboratories. “RSA Security - 2.1.1 What
is public-key cryptography?” in Crypto FAQ

http://www.rsasecurity.com/rsalabs/node.asp?id=2165

[2] Newman, M. E. J. “The spread of epidemic
disease on networks.” Physical Review E, 66
(016128), 2002.

[3] Microsoft Internet Explorer 5.2 for Mac, Version
5.2.3 (5815.1), Microsoft Corporation.

6


