
Amorphous Medium Language

Jacob Beal
MIT CSAIL

LSMAS Workshop, July 2005

Programming large spatially distributed systems is too hard!

– Reduce complexity by programming continuous
space and compiling for discrete agents

– Increase reuse by functional composition of processes

The Big Picture

A Farming Problem

A Farming Problem

A Farming Problem

A Farming Problem

Solar powered UCI DuraNode

A Farming Problem

Solar powered UCI DuraNode

A Farming Problem

Wait a minute! Weren't we programming a farm?

We need an Abstraction Barrier!

What behavior we
want from the space

How a network of agents
reliably produce the behavior

Related Work

● Amorphous Computing
– [Coore 99], [Nagpal 01],

[Kondacs 03]

● Paintable Computing
[Butera 02]

● GHT [Ratnasamy et al. 02],
TinyDB [Madden et al. 02]

● Regiment [Newton & Walsh
04]

Related Work

● Amorphous Computing
– [Coore 99], [Nagpal 01],

[Kondacs 03]

● Paintable Computing
[Butera 02]

● GHT [Ratnasamy et al. 02],
TinyDB [Madden et al. 02]

● Regiment [Newton & Walsh
04]

Related Work

● Amorphous Computing
– [Coore 99], [Nagpal 01],

[Kondacs 03]

● Paintable Computing
[Butera 02]

● GHT [Ratnasamy et al. 02],
TinyDB [Madden et al. 02]

● Regiment [Newton & Welsh
04]

Related Work

● Amorphous Computing
– [Coore 99], [Nagpal 01],

[Kondacs 03]

● Paintable Computing
[Butera 02]

● GHT [Ratnasamy et al. 02],
TinyDB [Madden et al. 02]

● Regiment [Newton & Walsh
04]

Amorphous Medium Language

● Global program→local action→global behavior
● Implicit distribution, coordination, communication

– Program continuous space

– Compile for discrete devices

– Infrastructure supplied robust coordination primitives

● Functional composition of programs
(defun pest-management ()
 (in-components
 (dilate 2 (select-region (> (sense :bugs) 0.2)))
 (reduce-region #'max (sense :bugs) 0)))

AML: Two Compatible Models

● Global Model (continuous regions)
– reduce-region, in-components, select-

region, dilate

● Discrete Model (agents, messages)
– send, receive, sleep, sense, act

AML: Two 3 Compatible Models

● Global Model (continuous regions)
– reduce-region, in-components, select-

region, dilate

● Neighborhood Model (continuous
neighborhoods)
– exposed-state@, reduce-neighbors

● Discrete Model (agents, messages)
– send, receive, sleep, sense, act

x

AML: Two 3 4 Compatible Models

● Global Model (continuous regions)
– reduce-region, in-components, select-

region, dilate

● Neighborhood AML (composable
nbrhood processes, infrastructure)

● Neighborhood Model (continuous
neighborhoods)
– exposed-state@, reduce-neighbors

● Discrete Model (agents, messages)
– send, receive, sleep, sense, act

x

Programming in AML

x

AML Code

N-AML Code

AML Primitives

Neighborhood Methods

Neighborhood Emulator

Discrete Kernel

compiles to

compiles to

written in

simulated on

Executed by

✓

✓

✓

✓
✓

x
in progress...

Compiling AML to N-AML

AML:
(defprocess pest-management ()
 (in-components
 (dilate 2 (select-region (> (sense :bugs) 0.2)))
 (reduce-region #'max (sense :bugs) 0)))

N-AML:
(defun pest-management ()
 (where
 (dilate 2 (lambda (place) (> (sense-bugs place) 0.2)))
 (gossiped-value #'max #'sense-bugs 0)))

● Compilation is straightforward, implementing
reduce-region is difficult

Neighborhood Model

● Continuous region of space
● Each point is a separate agent
● Agents share (delayed) exposed state w. neighbors

x
(neighborhood x)

y

Discrete Model

● Dozens to billions of simple, unreliable agents
● Distributed through space, communicating by

local broadcast
● Agents may be added or removed
● No global services (e.g. time, naming, routing,

coordinates)
● Relatively cheap power, memory, processing
● Agents are immobile*
*or slow and dense enough to run Virtual Stationary Nodes [Dolev et al. 05]

Places

● Places are Points/Agents
● State at a place:

– Unique ID

– Sensors (e.g. bug-detector, temperature)

– Actuators (e.g. pesticide sprayer, LEDs)

– Running process

Neighborhood Abstraction

● A process interacts with its neighborhood by:
– setting the state exposed to its neighbors

– sampling the state exposed by its neighbors

neighbor-values

exposed-state

Process

UID Timer Area Exposed State

ME N/A 0.32 (where T (dilate 2 #'fn 1) ...)

703 1 0.43 (where T (dilate 2 #'fn 0) ...)

398 3 0.21 (where nil (dilate 2 #'fn 3) ...)
...

receive

sleep

decay make-refresh

refresh-nbr

sleep

send

Process Execution Model
sl

ee
p

terminatep@

propagate@

execute-round@

exposed-state@

integrate-foreign-state@
neighborhood

abstraction

TRUE FALSE

FALSE
TRUE

neighbor-values

exposed-state

Handling Process Time

● Time is partially synchronous
– Discrete rounds at each place

– Different places have different clocks

● A process is an object containing state at round T
– Round 0 specified as arguments, initial forms

– Evolution specified as transition from T to T+1

place X:

place Y:

4 5 6 7 8 9 10

2 3 4 5 6
sleep sleep sleep sleep

sleep sleep sleep sleep sleep sleep

Starting and Stopping Processes

● Processes run when installed at a place
– Places lacking a process attempt to install from

neighbor's exposed state

● Processes are tested for termination each round

process
process

Handling Interaction with Neighbors

● Exposed state = constructor args, designated slots
– Terminated processes expose nothing

● Incremental integration between rounds
– special neighborhood forms

● e.g. (reduce-nbrs #'max v 0)
● may implicitly use hidden state

– result returned during next transition between rounds

Handling Process Composition

● A process produces a time-series of values
– A composed process is a tree of processes containing

other processes in their state
● Compose by filling process slots (implicit or explicit)

– Execution protocol must distribute through the tree

where
dilate

gossiped-valuesense-bugs

unnamed-lambda
boolean

number

boolean

number

number | nil

Local functions as processes

(sense-bugs place) accesses a sensor

(exposed-state@ place #'sense-bugs)→'(function #'sense-bugs)

(propagate@ place 'function state)→#'sense-bugs

(integrate-foreign-state@ place #'sense-bugs state)→nil [no effect]

(execute-round@ place #'sense-bugs)→(sense-bugs place)

(terminatep@ place #'sense-bugs)→nil

● An ordinary function is a process that
ignores its neighbors and never terminates.

Describing Processes

(defnonlocal where ((f nonlocal) (target nonlocal))
 (declare (termination (terminatep target)))
 (declare (exposing live))
 (declare (integration (target (and live target))))
 (with-state ((live nil))
 (setf live (evaluate f))
 (if live (evaluate target) nil)))

● where executes the target process only when
the f process returns true

(defun where (f target)
 (let ((#:INST (make-instance 'where :f f :target target)))
 (with-slots (f target live) #:INST
 (setf live nil))
 #:INST)))

N-AML: Constructor & Class Def'n
(defnonlocal where ((f nonlocal) (target nonlocal))
 (declare (termination (terminatep target)))
 (declare (exposing live))
 (declare (integration (target (and live target))))
 (with-state ((live nil))
 (setf live (evaluate f))
 (if live (evaluate target) nil))) (defclass where (nonlocal)

 ((f :accessor where-f :initarg :f)
 (target :accessor where-target :initarg :target)
 (live :accessor where-live :initarg :live)))

N-AML: Execution & Termination
(defnonlocal where ((f nonlocal) (target nonlocal))
 (declare (termination (terminatep target)))
 (declare (exposing live))
 (declare (integration (target (and live target))))
 (with-state ((live nil))
 (setf live (evaluate f))
 (if live (evaluate target) nil)))

(defmethod execute-round@ ((#:PLACE place) (#:INST where))
 (with-slots (f target live) #:INST
 (progn
 (setf live (execute-round@ #:PLACE f))
 (if live

 (execute-round@ #:PLACE target)
 nil))))

(defmethod terminatep@
 ((#:PLACE place) (#:INST where))
 (with-slots (f target live) #:INST
 (terminatep@ #:PLACE target)))

N-AML: Communication
(defnonlocal where ((f nonlocal) (target nonlocal))
 (declare (termination (terminatep target)))
 (declare (exposing live))
 (declare (integration (target (and live target))))
 (with-state ((live nil))
 (setf live (evaluate f))
 (if live (evaluate target) nil)))

(defmethod propagate@ ((#:PLACE place) (#:TYPE (eql 'where)) #:EXP)
 (when (type-match 'where #:EXP)
 (destructuring-bind (f target live) (cdr #:EXP)
 (setf f (propagate@ #:PLACE (when (consp f) (first f)) f))
 (setf target

(propagate@ #:PLACE (when (consp (and live target))
 (first (and live target)))
 (and live target)))

 (unless (terminatep@ #:PLACE target)
(make-instance 'where :f f :target target :live nil)))))

(defmethod exposed-state@ ((#:PLACE place) (#:INST where))
 (unless (terminatep@ #:PLACE #:INST)
 (with-slots (f target live) #:INST
 (list 'where (exposed-state@ #:PLACE f)

 (exposed-state@ #:PLACE target) live))))

(defmethod integrate-foreign-state@
 ((#:PLACE place) (#:INST where) #:EXP)
 (when (type-match 'where #:EXP)
 (with-slots (f target live) #:INST
 (destructuring-bind (#:F #:TARGET #:LIVE) (cdr #:EXP)

(integrate-foreign-state@ #:PLACE f #:F)
(integrate-foreign-state@ #:PLACE target

(and #:LIVE #:TARGET))))
 t))

Putting the pieces together...

● Compound process created by functional
composition of constructors

(defun pest-management ()
 (where
 (dilate 2 (lambda (place) (> (sense-bugs place) 0.2)))
 (gossiped-value #'max #'sense-bugs 0)))

Simulated Execution

● Implemented in Allegro CommonLISP
● Runs 5000+ agent simulations

Future Work

● Optimization
● Discrete→Mica2 Motes
● Finish Global→Neighborhood

– Update compiler

– Improved reduce-region primitive

AML Contributions

● Abstraction barrier between what and how in
large multi-agent systems
– Computation models bridging from continuous

regions of space to agents passing messages

– Language supporting functional composition of
processes

– Primitives scalable to extremely large systems

AML Contributions

● Abstraction barrier between what and how in
large multi-agent systems
– Computation models bridging from continuous

regions of space to agents passing messages

– Language supporting functional composition of
processes

– Primitives scalable to extremely large systems

Thanks to Hal Abelson, Jonathan Bachrach,
Gerry Sussman

Appendices

Isn't AML too expensive to use?

● Plentiful opportunities for optimization
● Communication is limited by congestion

– Maximum density of bits, not number

● Power isn't as tight a constraint as often percieved
– Powered networks: user-deployed (RoofNet), solar

(DuraNode), embedded distribution (biological tissue)

– Lots of research on energy storage

– Tradeoff between control response and power usage

Using neighbor state

● The dilate process returns true within n units of
points where the source process returns true

(defnonlocal dilate (n (source nonlocal))
 (declare (termination (terminatep source)))
 (declare (exposing r))
 (with-state ((r (1+ n)))
 (merge-nbrs (r) (setf r (min r (nbr r))))
 (when (evaluate source) (setf r -1))
 (incf r)
 (<= r n)))

Using neighbor state

● The gossiped-value process uses fuser to reduce
the values of the source process to the same
summary value at every place

(defnonlocal gossiped-value
 (fuser (source nonlocal) &optional (base unspecified))
 (declare (exposing value))
 (declare (termination nil))
 (with-state ((value base))
 (setf value
 (funcall fuser (evaluate source) (reduce-nbrs fuser value base)))))

