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If the problem structure is geometric... 
take advantage of it!

Disaster Relief

Sensor Networks

Pervasive Computing

… but can we deepen the mathematical foundations?



Outline

● What is Spatial Computing?
● Global → Local → Global
● From Space to Robustness & Scalability



Spatial Computers

Robot Swarms Biological Computing

Modular RoboticsReconfigurable Computing

Sensor Networks

Cells during Morphogenesis
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Space/Network Duality

How well does the network cover space?

What space is covered well by the network?
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Programming Languages Need:

● Simple, easy to understand code
● Robust to errors, adapt to changing 

environment
● Scalable to potentially vast numbers of devices
● Take advantage of spatial nature of problems
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Geometric Program: Channel
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Amorphous Medium

Continuous space & time
Infinite number of devices
See neighbors' past state

Approximate with:
Discrete network of devices
Signals transmit state

neighborhood

device



Proto
(def gradient (src) ...)
(def distance (src dst) ...)
(def dilate (src n)
  (<= (gradient src) n))
(def channel (src dst width)
  (let* ((d (distance src dst))
         (trail (<= (+ (gradient src) 
                       (gradient dst)) 
                    d)))
    (dilate trail width)))

neighborhood

device

Device
Kernel

evaluation

global to local
compilation

discrete
approximation

platform
specificity &
optimization
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Proto's Families of Primitives
Pointwise Restriction

Feedback Neighborhood

+ restrict

+
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In Simulation...
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Continuous Programs → Self-Scaling

Target tracking across three orders of magnitude



Robustness

● Local change adapts in 
discrete approximation

● Global change adapts 
in manifold geometry



Composition

● Purely functional → 
simpler composition

● Self-stabilizing 
geometric algorithms 
can be composed 
feed-forward

● Approximation error 
can be predicted



Weaknesses

 Functional programming scares people
 Programmers can break the abstraction
 No dynamic allocation of processes 
 No formal proofs available for quality of 

approximation in a composed program

(active research on last two)



Summary

 Amorphous Medium abstraction simplifies 
programming of space-filling networks

 Proto has four families of space and time 
operations, compiles global descriptions into 
local actions that approximate the global

 Geometric metaphors simplify the design of 
distributed algorithms that are scalable, 
adaptive, and robust.



Open Problems

● What is a method for computing approximation 
quality, given a primitive approximation model?

● What is a method for determining the critical 
space/time density for approximation failure?

● Is Proto space/time universal w.r.t. causal, 
finitely approximable computations?

● What are the lower bound efficiency costs of 
the continuous space abstraction?

and many more...
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