

A Spatial Computing Approach to
Distributed Algorithms

Jacob Beal

Asilomar Signals, Systems, & Computers
November, 2010

If the problem structure is geometric...
take advantage of it!

Disaster Relief

Sensor Networks

Pervasive Computing

… but can we deepen the mathematical foundations?

Outline

● What is Spatial Computing?
● Global → Local → Global
● From Space to Robustness & Scalability

Spatial Computers

Robot Swarms Biological Computing

Modular RoboticsReconfigurable Computing

Sensor Networks

Cells during Morphogenesis

(w. Dan Yamins)

Graphs

Crystalline
(e.g. CAs)

Amorphous/
Continuous

(w. Dan Yamins)

Graphs

Crystalline
(e.g. CAs)

Amorphous/
Continuous

de
ns

ity

sp
ac

e
co

m
pl

e
xi

ty
jitter

grain size

(w. Dan Yamins)

Graphs

Crystalline
(e.g. CAs)

Amorphous/
Continuous

de
ns

ity

sp
ac

e
co

m
pl

e
xi

ty
jitter

grain size

spatial computing

Space/Network Duality

How well does the network cover space?

What space is covered well by the network?

Example: Target Tracking

Intruder
Guard

Example: Target Tracking

Intruder
Guard

Example: Target Tracking

Intruder
Guard

Programming Languages Need:

● Simple, easy to understand code
● Robust to errors, adapt to changing

environment
● Scalable to potentially vast numbers of devices
● Take advantage of spatial nature of problems

Outline

● What is Spatial Computing?
● Global → Local → Global
● From Space to Robustness & Scalability

Example: Target Tracking

Intruder
Guard

Geometric Program: Channel

Desti-
nationSource

(cf. Butera)

Geometric Program: Channel

(cf. Butera)

Desti-
nationSource

Geometric Program: Channel

(cf. Butera)

Desti-
nationSource

Geometric Program: Channel

(cf. Butera)

Desti-
nationSource

Geometric Program: Channel

(cf. Butera)

Desti-
nationSource

Geometric Program: Channel

(cf. Butera)

Desti-
nationSource

Geometric Program: Channel

(cf. Butera)

Desti-
nationSource

Computing with fields

source destination

distance-to distancedistance-to

<=

+

dilate

width

Computing with fields

source destination

distance

<=

+

dilate

width

37

10

distance-todistance-to

Amorphous Medium

Continuous space & time
Infinite number of devices
See neighbors' past state

Approximate with:
Discrete network of devices
Signals transmit state

neighborhood

device

Proto
(def gradient (src) ...)
(def distance (src dst) ...)
(def dilate (src n)
 (<= (gradient src) n))
(def channel (src dst width)
 (let* ((d (distance src dst))
 (trail (<= (+ (gradient src)
 (gradient dst))
 d)))
 (dilate trail width)))

neighborhood

device

Device
Kernel

evaluation

global to local
compilation

discrete
approximation

platform
specificity &
optimization

G
lob a

l Lo cal D
i scre te

Proto's Families of Primitives
Pointwise Restriction

Feedback Neighborhood

+ restrict

+

741

delay

48

any-hoodnbr

In Simulation...

Outline

● What is Spatial Computing?
● Global → Local → Global
● From Space to Robustness & Scalability

Continuous Programs → Self-Scaling

Target tracking across three orders of magnitude

Robustness

● Local change adapts in
discrete approximation

● Global change adapts
in manifold geometry

Composition

● Purely functional →
simpler composition

● Self-stabilizing
geometric algorithms
can be composed
feed-forward

● Approximation error
can be predicted

Weaknesses

 Functional programming scares people
 Programmers can break the abstraction
 No dynamic allocation of processes
 No formal proofs available for quality of

approximation in a composed program

(active research on last two)

Summary

 Amorphous Medium abstraction simplifies
programming of space-filling networks

 Proto has four families of space and time
operations, compiles global descriptions into
local actions that approximate the global

 Geometric metaphors simplify the design of
distributed algorithms that are scalable,
adaptive, and robust.

Open Problems

● What is a method for computing approximation
quality, given a primitive approximation model?

● What is a method for determining the critical
space/time density for approximation failure?

● Is Proto space/time universal w.r.t. causal,
finitely approximable computations?

● What are the lower bound efficiency costs of
the continuous space abstraction?

and many more...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

