Spatial computing: a unifying approach to computational materials

Jacob Beal

Royal Society Meeting on Heterotic Computing November, 2013

RaytheonBBN Technologies

Raytheon

Computing runs across physical space-time BBN Technologies

Emerging Computational Substates Space-Time **Programming Models Multi-Substrate** dęvice **Computation** neighborhood

Outline

- From Monolithic to Spatial Computing
- Amorphous Medium & Field Calculus
- Biological / Hybrid Computational Substrate

Traditional Monolithic Computing

The venerable von Neumann model is breaking down in several ways...

The End of Moore's Law

Intel Xeon Phi: 61 cores

Xilinx Virtex-7: 2M Logic cells

High-performance computing = mesh

Everything is a wireless computer

New Computational Materials

Synthetic Biology:

Other emerging areas too, including nanoassembly, active materials...

Fundamentally different models

Isolate Systems
Extremely High FLOPs

High Dispersion Moderate FLOPs

High Resolution Sense/Act Abysmal FLOPs

How can we program aggregates adaptively & efficiently? Can mixed systems exploit platform complementarity?

Spatial Computers

More formally...

- A spatial computer is a collection of computational devices distributed through a physical space in which:
 - the difficulty of moving information between any two devices is strongly dependent on the distance between them, and
 - the "functional goals" of the system are generally defined in terms of the system's spatial structure

Outline

- From Monolithic to Spatial Computing
- Amorphous Medium & Field Calculus
- Biological / Hybrid Computational Substrate

- Continuous space & time
- Infinite number of devices
- See neighbors' past state

Approximate with:

- Discrete network of devices
- Signals transmit state

Field Calculus:

With appropriate pointwise measurements, operations are space-time universal

[Viroli et al., '13]

Implementation: Proto


```
(def gradient (src) ...)
(def distance (src dst) ...)
                                                                                                                000
                                          evaluation
(def dilate (src n)
 (<= (gradient src) n))
(def channel (src dst width)
 (let* ((d (distance src dst))
                                                    global to local
     (trail (<= (+ (gradient src)
                                                     compilation
              (gradient dst))
                                                                                                               Loca
            d)))
                                    platform
                                                                                                device
  (dilate trail width)))
                                  specificity &
                                 optimization
                                                                                             neighborhood
                                                                                                               Discrete
                                                       discrete
                                                   approximation
                                                                      Device
                                                                       Kernel
```

[Beal & Bachrach, '06]

Heterogeneous Computing Materials

Functional "streams" integrate different time scales

Outline

- From Monolithic to Spatial Computing
- Amorphous Medium & Field Calculus
- Biological / Hybrid Computational Substrate

Vision: Precision Crop Management

Application: Protective Biofilms

Raytheon BBN Technologies

Synthetic Biology: Transcriptional Logic

Stablizes at decay = production

Genetic Regulatory Networks

- Parallel dataflow computation
- Continuous time evolution, feedback loops

Example: SR-Latch

 Spatial patterning via intercellular signaling, adhesion, cell morphology, ...

BioCompiler: Proto → GRN

Optimization of Complex Designs

Unoptimized: 15 functional units, 13 transcription factors

A high-level program of a system that reacts depending on sensor output

[Beal et al., 2012]

Program instantiated for two target platforms

E. coli Target

[Beal et al., 2012]

Mammalian Target

Abstract genetic regulatory networks

[Beal et al., 2012]

Automated part selection using database of known part behaviors

Mammalian Target

E. coli Target

[Beal et al., 2012]

Automated assembly step selection for two different platform-specific assembly protocols

Mammalian Target

E. coli Target

[Beal et al., 2012]

Resulting cells demonstrating expected behavior

Challenge: Synthetic Device Libraries

Can use a device only once/circuit → need lots of devices!

Zinc-Finger Proteins:

TALE Proteins:

CRISPR: CAS/gRNA:

Challenge: Predictable Composition

Improved models & metrology

→ high-precision circuit prediction

Two-Repressor Cascade

Three-Replicon Mixture

Biological/Hybrid Substrates: where we stand

- Major technological trends are all driving towards a world filled with spatial computers
- Continuous space-time models allow effective adaptive aggregate programming.
- Mixed-material computation will enable a wide range of visionary applications.
- Rapid progress towards predictable, scalable computational control of biological organisms

Acknowledgements:

RaytheonBBN Technologies

Aaron Adler

Brett Benyo

Taylor Campbell

Joseph Loyall

Rick Schantz

Kyle Usbeck

Fusun Yaman

Ron Weiss

Jonathan Babb

Noah Davidsohn

Tasuku Kitada

Ting Lu

Douglas Densmore

Swapnil Bhatia

Traci Haddock

Evan Appleton

Chenkai Liu

Viktor Vasilev

Tyler Wagner

Mirko Viroli Matteo Cascadei

Ferruccio Damiani

Tools available online!

http://proto.bbn.com/

http://synbiotools.bbn.com

