

Dynamically Defined Processes for
Spatial Computers

Jacob Beal
Spatial Computing Workshop 2009

Dynamic Allocation of State

Many applications must create state (e.g. objects,
processes) in response to their environment

Consider tracking flocks of birds...

Why is this hard?

Are the visible birds part of the same flock?

Outline

● Defining spatial processes
● Problem of independent creation
● Dynamically defining processes

Related Work

● Viral Programming: dynamic but unconstrained
● e.g. Paintable computing [Butera, '02], TOTA

[Mamei & Zambonelli, '06]

● Distributed algorithms: safe but costly
● e.g. Virtual Mobile Nodes [Dolev et al., '04]

● Data aggregation: highly specialized
● e.g. greedy incremental trees [Intanagonwiwat, '01]

● Spatial languages: mostly compile-time
● e.g. Proto [Beal & Bachrach, '06], Meld [Ashley-

Rollman et al., '07], OSL [Nagpal, 01]

Spatial Focus: Amorphous Medium

Continuous space & time
Infinite number of devices
See neighbors' past state

Approximate with:
Discrete network of devices
Signals transmit state

neighborhood

device

Amorphous Medium Definition (Simple)

N(m)

m

Space

Time

● Compact, Riemannian manifold M, time interval T

● N(m) contains ε-ball around m; connected, compact

● Information flows at c

● Interval between (m,t) and (m',t'): s2 = c2(t-t')2-d(m,m')2

accessible values
(m,t)

timelike

spacelikelig
ht

lik
e

Definition of Process

● Let p be an executing
instance of a program at a
point m

● p' on m' ∈ N(m) is in the
same process if p can use
state from p'

● Specifiable by 5 behaviors:
creation, growth, sharing,
computation, termination

Outline

● Defining spatial processes
● Problem of independent creation
● Dynamically defining processes

Problem of Independent Creation

Are the visible birds part of the same flock?

UIDs can't distinguish processes

Theorem: if instances of processes form an
equivalence class ~, no algorithm for creating
program instances exists that can guarantee safe
creation in less than O(diameter/c) time
● Proof sketch:

● Time bound → space-like separation possible
● choice of ~ only affected by causally related points
● Algorithm must fail on one of:

– m and m' create P
– m and m' create P'
– m creates P, m' creates P'

Outline

● Defining spatial processes
● Problem of independent creation
● Dynamically defining processes

Solution: dynamically determined extent

Instead of identifying processes with UIDs specify
neighborhood flow directly.

Let's make this concrete...

Proto
(def distance-to (src) ...)
(def distance (src dst) ...)
(def dilate (src n)
 (<= (distance-to src) n))
(def channel (src dst width)
 (let* ((d (distance src dst))
 (trail (<= (+ (distance-to src)
 (distance-to dst))
 d)))
 (dilate trail width)))

neighborhood

device

Device
Kernel

evaluation

global to local
compilation

discrete
approximation

platform
specificity &
optimization

G
lob a

l Lo cal D
i scre te

http://stpg.csail.mit.edu/proto.html

http://stpg.csail.mit.edu/proto.html

Computing with fields

source destination

distancedistance-to

<=

+

dilate

width

distance-to

Computing with fields

source destination

distance

<=

+

dilate

width

37

10

distance-to distance-to

Four Families of Primitives
Pointwise Restriction

Feedback Neighborhood

+ restrict

+

741

delay

48

any-hoodnbr

Branching = Restriction

source destination coord

channel

10

broadcast

10

(5
, 7

)

Processes will dynamically determine restriction

Possible Proto process primitives:

 (procs (elt sources)

 ((var init evolve) ...)

 (same? run? &optional terminate?)

 . body)

 (instances variable)

Example: tracking a flock

flock identity = similarly moving birds

(def close-vec (base other err)
 (< (len (- base other)) (* err (len base))))

(def track-flocks (bird-vecs)
 (procs (bird-vec bird-vecs)
 ((flock-vec
 bird-vec
 (average (filter
 (lambda (v) (close-vec flock-vec v 0.1))
 bird-vecs))))
 ((close-vec flock-vec (nbr flock-vec) 0.1)
 (find-if (lambda (v) (close-vec flock-vec v 0.1))
 bird-vecs))
 (measure-shape)))

Implication: self-crossing!

Self-crossing flock Coherent motion processEquivalence class process

Example: reporting on flocks

use a reporting UID calculated by flock

(def report-data-stream (data-set base)
 (procs (data data-set)
 ((uid (1st data) uid)
 (src true (find uid (map 1st data-set))))
 ((= uid (nbr uid))
 (dilate src diameter))
 (channel-cast src base 2 (2nd data))))

Example: finding the nearest nest

Processes compete on distance to nest

(def voronoi (source payload-fn)
 (procs ((src-id (if source (tup (mid)) nil)))
 ((d (distance-to (= (mid) src-id)))
 ((= src-id (nbr src-id))
 (= d (apply min (instances d))))
 (payload-fn src-id d)))

(voronoi (nest) (lambda (id d) (measure-shape)))

Contributions

● Defined spatially-extended processes
● Proved process IDs are impractical
● Proposed general process primitive for Proto

● exa: weakening transitivity to define a flock

Open Questions

● What are good primitives for expressing
dynamic process formation?

● What sorts of dynamic process-based
algorithms are useful for various tasks?

● How can reportable identity be tracked for a
process that splits and rejoins its parts?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

