
Organizing	
 the	
 Aggregate:	

Languages	
 for	
 Spa5al	
 Compu5ng	

Jacob	
 Beal,	
 Stefan	
 Dulman,	
 Kyle	
 Usbeck,	
 Mirko	
 Viroli,	
 Nikolaus	

Correll	

5th	
 Spa(al	
 Compu(ng	
 Workshop	
 	

@	
 AAMAS	
 2012	

Aims of the Study

1.  Develop a framework for analyzing and
comparing spatial computing DSLs
–  Targeted at programming some class of spatial

computers
–  Includes explicitly geometric or topological constructs

that operate over aggregates of devices
–  Unbounded combinations of specifications

2.  Survey the current state of the art
3.  Identify gaps needing to be addressed by future

investigations

!"#$"%&%
'(()*+,-./"%

0).1,)23.24.+,)%
5.6(*),-./%

78"3#6%.9%:8$*,;%
</3#$+.//#+3#;%%

5.6(=-/>%?#@*+#"%

Aggregate Programming Architecture

Aggregate Programming Architecture

!"#$"%&%
'(()*+,-./"%

0(,-,)%1.2(3-/4%

'5"6$,+6%7#8*+#%

9:;"*+,)%9),<.$2%

0;"6#2%=,/,4#2#/6%

!"#$"%&%
'(()*+,-./"%

0(,-,)%1.2(3-/4%

'5"6$,+6%7#8*+#%

9:;"*+,)%9),<.$2%

0;"6#2%=,/,4#2#/6%

Properties #1: DSL

•  What type of programming language?
e.g., functional, declarative, imperative

•  What DSL design pattern?

•  What is the intended platform?

•  Which layers are the focus?

!"#$%&'(%)

!"'&*%+)
,-%+.-+$)

/$�'1*(%)
2%3$%#$4)

5'++67-18)

Properties #2: Space-time Operations

!"#$"%&%
'(()*+,-./"%

0(,-,)%1.2(3-/4%

'5"6$,+6%7#8*+#%

9:;"*+,)%9),<.$2%

0;"6#2%=,/,4#2#/6%

Space-­‐Time	
 Informa5on	

Measure	
 Space-­‐Time	

Manipulate	
 Space-­‐Time	

Compute	

Pa@ern	

Physical	

Evolu(on	

Meta:	
 Compose,	
 Abstract,	
 Restrict	

Properties #3: Abstract Device Model

!"#$"%&%
'(()*+,-./"%

0(,-,)%1.2(3-/4%

'5"6$,+6%7#8*+#%

9:;"*+,)%9),<.$2%

0;"6#2%=,/,4#2#/6%

•  What scope of communication region?
e.g., neighborhood, global

•  What communication granularity?
(unicast, multicast, or broadcast)

•  How variable is the code?
(uniform, heterogeneous, mobile)

Domains Surveyed

•  Amorphous Computing
•  Biological Modeling & Design
•  Agent-based Models
•  Wireless Sensor Networks
•  Pervasive Computing
•  Swarm & Modular Robotics
•  Parallel & Reconfigurable Computing
•  Formal Calculi

Reference Example: “T-program”

Create	
 a	
 local	

coordinate	
 system	

measure	
 space-­‐=me	

Move/grow	
 devices	
 to	

form	
 T-­‐shaped	
 structure	

manipulate	
 space-­‐=me	

Find	
 center	
 of	
 gravity	
 and	

draw	
 a	
 ring	
 around	
 it	

measure	
 space-­‐=me	

compute	
 pa>ern	

Representative Examples of T-program

Proto	
 NetLogo	
 MGS	

Amorphous	

Compu(ng	

Agent-­‐Based	

Models	

Biological	

Modeling	

Analysis of languages…
DSL Type Pattern Platform Layers
Amorphous Computing
Proto Functional Invention Any SC,AD
PyMorphous Imperative Extension Any Network SC,AD
ProtoVM Imperative Invention Any Network AD,SM
Growing Point Language Declarative Invention Any Network SC
Origami Shape Language Imperative Invention 2D Mesh Network SC
Biological
L-systems Functional Invention Simulation SC
MGS Declarative Invention Simulation SC,AD
Gro Imperative Invention Simulation AD
GEC Functional Invention Biological cells AD
Proto BioCompiler Functional Piggyback Biological cells AD
Agent-Based
Graphical Agent Modeling Language Graphical Extension Conceptual AD
Agent Framework Imperative* Extension Any Network AD,SM
Multi-agent Modeling and Simulation Toolkit Any Any Any SC,AD,SM
* JESS, being declarative, is a notable exception in this group
Wireless Sensor Networks
Regions based DSLs* Imperative Extension Wireless Network AD
Data-flow based DSLs Imperative Invention Wireless Network AD,SM
Database-like DSLs Declarative Piggyback Wireless Network SC
Centralized-view DSLs Imperative Piggyback Wireless Network AD
Agent-based DSLs Imperative Extension Wireless Network AD
* Regiment, an invented functional language is a notable exception in this group
Pervasive Computing
TOTA Imperative Extension Wireless/Wired Network AD,SM
Chemical reaction model Declarative Invented Wireless/Wired Network AD,SM
Spatially-Scoped Tuples Imperative Extension Wireless/Wired Network AD,SM
Swarm & Modular Robotics
Bitmap Language Descriptive Invented Swarms and Modular Robots SC
Graph Grammars Functional Invented Robot Swarms SC,AD
PRISM Declarative Invented Robot Swarms AD
Meld Declarative Extension Modular Robots SC,AD
DynaRole/M3L Imperative/Declarative Invention Modular Robots SC,AD
ASE Imperative Extension Modular Robots SC,AD,SM
Parallel & Reconfigurable
Dataflow DSLs Any Any Parallel Hardware SM,AD
MPI Imperative Extension Parallel Hardware SC,AD,SM
Erlang Functional Invented Parallel Hardware SC,AD,SM
X10/Chapel/Fortress Imperative Invented Parallel Hardware SC,AD,SM
GraphStep Imperative Invented Parallel Hardware SC,AD,SM
StarLisp Functional Piggyback Parallel Hardware SC,AD
Grid Libraries Imperative Extension Parallel Hardware SC,AD,SM
Cellular Automata Declarative Invented Simulation SC,AD
Formal Calculi
3π Process Calculus Extension Abstract geometric space PP,AD
Mobile ambients Process Calculus Extension Abstract nested compartments PP,AD

Table 1: DSL characteristics of spatial computing languages.

placed a language in one domain or another somewhat arbitrarily.
We begin with two domains where the goals are often explicitly spatial: amorphous computing (Sec-

tion 3.1) and biological modeling and design (Section 3.2). We then discuss the more general area of
agent-based models (Section 3.3), followed by four application domains that are being driven towards an
embrace of spatiality by the nature of their problems: wireless sensor networks (Section 3.4), pervasive sys-
tems (Section 3.5), swarm and modular robotics (Section 3.6), and parallel and reconfigurable computing
(Section 3.7). Finally, we survey a few additional computing formalisms that deal with space explicitly (Sec-
tion 3.8). A theme that we will see emerge throughout this discussion is that DSLs throughout these domains
are often torn between addressing aggregate programming with space-time operators and addressing other
domain-specific concerns, particularly so in the four application domains surveyed.

To better enable an overall view of the field and comparison of languages, we have collected the char-
acteristics of the most significant DSLs or classes of DSLs in three tables, as derived from our analytic
framework. Table 1 identifies the general properties of the DSL, Table 2 identifies the classes of space-time
operations that each DSL uses to raise its abstraction level from individual devices toward aggregates, and
Table 3 identifies how each DSL abstracts devices and communication. Note that for purposes of clarity,
many of the languages discussed are not listed in these tables, only those that we feel are necessary in order

10

… and more analysis…
DSL Discretization Comm. Region Granularity Code Mobility
Amorphous Computing
Proto Continuous Neighborhood Broadcast Uniform
PyMorphous Discrete Neighborhood Broadcast Uniform
ProtoVM Discrete Neighborhood Broadcast Uniform
Growing Point Language Discrete Neighborhood Broadcast Uniform
Origami Shape Language Continuous Neighborhood Broadcast Uniform
Biological
L-systems Cellular Local Pattern N/A Uniform
MGS Cellular Local Pattern Multicast Uniform
Gro Cellular Chemical Diffusion Broadcast Uniform
GEC N/A Chemical Diffusion Broadcast Heterogeneous
Proto BioCompiler Cellular Chemical Diffusion Broadcast Uniform
Agent-Based
Graphical Agent Modeling Language Discrete Global Unicast -
Agent Framework Discrete Global Unicast Mobile
Multi-agent Modeling and Simulation Toolkit Discrete, Cellular Global, Neighborhood Unicast, Multicast Uniform
Wireless Sensor Networks
Region-based DSLs Mixed Region Multicast Uniform
Data-flow based DSLs Discrete Neighborhood Unicast Uniform
Database-like DSLs Continuous - - Uniform
Region-based DSLs Discrete - - Uniform
Agent-based DSLs Mixed Neighborhood Unicast Mobile
Pervasive Computing
TOTA Discrete Global, Neighborhood Multicast Uniform
Chemical reaction model Discrete Neighborhood Unicast Uniform
Spatially-Scoped Tuples Discrete Neighborhood Unicast Uniform
Swarm & Modular Robotics
Bitmap Language Discrete - - Uniform
Graph Grammars Discrete Neighborhood Broadcast Uniform
Meld Discrete Neighborhood Broadcast Uniform
DynaRole/M3L Discrete Neighborhood Multicast Uniform
ASE Discrete Neighborhood Multicast Uniform
Parallel & Reconfigurable
Dataflow Languages Discrete Graph Unicast Heterogeneous
MPI Discrete Global Unicast Heterogeneous
Erlang Discrete Global Unicast Heterogeneous
X10/Chapel/Fortress Discrete Global Unicast Heterogeneous
GraphStep Discrete Neighborhood Broadcast Uniform
StarLisp Cellular Shift Unicast Uniform
Grid Libraries Cellular Neighborhood Unicast Uniform
Cellular Automata Cellular Neighborhood Broadcast Uniform
Formal Calculi
3π Discrete Global Unicast Mobile
Mobile ambients Discrete Neighborhood Unicast Mobile

Table 3: Abstract device characteristics of spatial computing languages.

to understand the current range and capabilities of spatial computing DSLs.

3.1 Amorphous Computing

Amorphous computing is the study of computing systems composed of irregular arrangements of vast numbers

of unreliable, locally communicating simple computational devices. The aim of this research area is to

deliberately weaken many of the assumptions upon which computer science has typically relied, and to

search for engineering principles like those exploited by natural systems. Amorphous computing languages

fall into two general categories: pattern languages and manifold programming languages.

3.1.1 Pattern Languages

The majority of the languages that have emerged from amorphous computing have been focused on the for-

mation of robust patterns. The most well known of these are Coore’s Growing Point Language (GPL) (Coore,

1999) and Nagpal’s Origami Shape Language (OSL) (Nagpal, 2001). The Growing Point Language is based

on a botanical metaphor and expresses a topological structure in terms of “growing points” that build a

pattern by incrementally passing activity through space and “tropisms” that attract or repel the motion

of growing points through simulated chemical signals. The combination of these two primitives allows the

12

… yet more analysis…
DSL Measure Manipulate Pattern Evolve Meta
Amorphous Computing
Proto Duration, Local

Coordinates, Den-
sity, Curvature

Vector Flow, Fre-
quency, Density,
Curvature

Neighborhood, Feedback Modular Functional,
Domain
Restric-
tion

PyMorphous Duration, Local
Coordinates

Vector flow Neighborhood - Procedural

ProtoVM Duration, Local
Coordinates, Den-
sity, Curvature

Vector Flow, Fre-
quency, Density,
Curvature

Neighborhood, Feedback Modular Procedural

Growing Point Language - - Line growth, tropisms - -
Origami Shape Language - Fold Huzita’s axioms - -
Biological
L-systems - Local Rewrite - - -
MGS Topological Rela-

tions, Local Coor-
dinates

Topological
Rewrite, Geo-
metric Location

Neighborhood - Functional

Gro Duration, Volume Frequency,
Growth

Rates Growth,
Diffusion,
Reactions

-

GEC - - Diffusion - Functional
Proto BioCompiler Duration,Density Frequency Diffusion, Feedback Modular Functional
Agent-Based
Graphical Agent Modeling
Language

- - - - -

Agent Framework - - - - -
Multi-agent Modeling and
Simulation Toolkit

Distance,Time Physical Move-
ment

Diffuse - -

Wireless Sensor Networks
Region-based DSLs Distance - Regions - - *
Data-flow based DSLs - - - - -
Database-like DSLs Distance, Time - Surfaces, Time Intervals - -
Centralized-view DSLs - - - - -
Agent-based DSLs - - - - -
* Being a functional language, Regiment offers functional composition and abstraction
Pervasive Computing
TOTA - - Neighborhood - -
Chemical reaction model Transfer rate - Neighbor diffusion - -
Spatially-Scoped Tuples Movement - Neighborhood Geometry - -
Swarm & Modular
Robotics
Bitmap Language - Physical Move-

ment, Shape
- - -

Graph Grammars - Shape - - -
PRISM Time - - - Grouping

of states
Meld Time Physical Move-

ment, Shape
- - -

DynaRole/M3L Angles,Time Physical Move-
ment, Shape,
Angles

- Kinematics -

ASE - Physical Move-
ment, Shape

Broadcast, gossip, gradi-
ent, consensus, synchro-
nization

- -

Parallel & Reconfigurable
Dataflow Languages - - Array * - Procedural
MPI - - - - Procedural
Erlang - - - - Functional
X10/Chapel/Fortress - Locality Locality - Procedural,

Locality
GraphStep - - Neighborhood - -
StarLisp - - Shifts - Functional
Grid Libraries - - Neighborhood - Procedural
Cellular Automata - - Neighborhood - -
* Huckleberry also offers “split patterns”
Formal Calculi
3π Geometric posi-

tion
Translation, Rota-
tion, Scaling

- Force
fields

-

Mobile ambients - Compartment
Change, Motion

Neighbor diffusion - -

Table 2: Spatial computing operators of spatial computing languages.

11

… and even more analysis

DSL Measure Manipulate Pattern Evolve Meta
Amorphous Computing
Proto Duration, Local

Coordinates, Den-
sity, Curvature

Vector Flow, Fre-
quency, Density,
Curvature

Neighborhood, Feedback Modular Functional,
Domain
Restric-
tion

PyMorphous Duration, Local
Coordinates

Vector flow Neighborhood - Procedural

ProtoVM Duration, Local
Coordinates, Den-
sity, Curvature

Vector Flow, Fre-
quency, Density,
Curvature

Neighborhood, Feedback Modular Procedural

Growing Point Language - - Line growth, tropisms - -
Origami Shape Language - Fold Huzita’s axioms - -
Biological
L-systems - Local Rewrite - - -
MGS Topological Rela-

tions, Local Coor-
dinates

Topological
Rewrite, Geo-
metric Location

Neighborhood - Functional

Gro Duration, Volume Frequency,
Growth

Rates Growth,
Diffusion,
Reactions

-

GEC - - Diffusion - Functional
Proto BioCompiler Duration,Density Frequency Diffusion, Feedback Modular Functional
Agent-Based
Graphical Agent Modeling
Language

- - - - -

Agent Framework - - - - -
Multi-agent Modeling and
Simulation Toolkit

Distance,Time Physical Move-
ment

Diffuse - -

Wireless Sensor Networks
Region-based DSLs Distance - Regions - - *
Data-flow based DSLs - - - - -
Database-like DSLs Distance, Time - Surfaces, Time Intervals - -
Centralized-view DSLs - - - - -
Agent-based DSLs - - - - -
* Being a functional language, Regiment offers functional composition and abstraction
Pervasive Computing
TOTA - - Neighborhood - -
Chemical reaction model Transfer rate - Neighbor diffusion - -
Spatially-Scoped Tuples Movement - Neighborhood Geometry - -
Swarm & Modular
Robotics
Bitmap Language - Physical Move-

ment, Shape
- - -

Graph Grammars - Shape - - -
PRISM Time - - - Grouping

of states
Meld Time Physical Move-

ment, Shape
- - -

DynaRole/M3L Angles,Time Physical Move-
ment, Shape,
Angles

- Kinematics -

ASE - Physical Move-
ment, Shape

Broadcast, gossip, gradi-
ent, consensus, synchro-
nization

- -

Parallel & Reconfigurable
Dataflow Languages - - Array * - Procedural
MPI - - - - Procedural
Erlang - - - - Functional
X10/Chapel/Fortress - Locality Locality - Procedural,

Locality
GraphStep - - Neighborhood - -
StarLisp - - Shifts - Functional
Grid Libraries - - Neighborhood - Procedural
Cellular Automata - - Neighborhood - -
* Huckleberry also offers “split patterns”
Formal Calculi
3π Geometric posi-

tion
Translation, Rota-
tion, Scaling

- Force
fields

-

Mobile ambients - Compartment
Change, Motion

Neighbor diffusion - -

Table 2: Spatial computing operators of spatial computing languages.

11

Results: Four Classes of Languages

•  Device Abstraction Languages
e.g., NetLogo, TOTA, MDL2ε, MPI
Good at pragmatics; weak at aggregate programming

•  Pattern Languages
Bitmap (e.g., voxel robotics), Geometric (e.g., L-systems, OSL), or

Topological (e.g., GPL, ASCAPE)
Good aggregate abstractions; strong domain assumptions

•  Information Movement Languages
e.g., TinyDB, Regiment, KQML
Good aggregate abstractions; strong domain assumptions

•  General Purpose Spatial Languages
e.g., Proto, MGS
Good aggregate abstractions; require library-building

Major Current Gaps

•  How can languages support both aggregate and
imperative-style programming?
Tension between command & distributed execution

•  How can we predict the platform requirements of
an aggregate program (e.g., neighborhood
density, localization accuracy) or vice versa?

•  How can aggregate programs be both
pragmatically fast and formally verified?

•  What are good models for aggregate first-class
functions?

The Bottom Line:

•  The collection of spatial computing DSLs is a lot
more coherent than it appears at first glance.

•  Aggregate programming is still quite immature:
–  Lots of room for research contributions.
–  APIs not yet good enough for novices to build complex

systems.
•  The GPSLs are worth trying out and/or working on:

–  Proto
–  MGS
–  StarLisp
–  PyMorphous

Paper	
 available	
 at:	
 hFp://arxiv.org/abs/1202.5509	
 	

