

Principles for
Engineered Emergence

Jacob Beal
MIT CSAIL

Spatial Computing

Cognitive Architectures

● How do the parts learn to work together?
– Vision
– Language
– Motor
– Social

“Please pass the coffee”

“Engineered Emergence”

Routine design of the behavior of
aggregates of unreliable devices with

complicated interaction patterns.

● Programming language approach
– Primitives
– Means of composition
– Means of abstraction

How do I clean up the mess?

Spatial Computers

● Devices spread through space whose
ability to interact depends on geometry

(Bachrach & Beal '06)
Simulation Mica2 Motes

Cognitive Architectures

● How can we build towards human-like
competence and flexibility?
– Example: communication bootstrapping

Symbol ChannelFoci

Meaning
Finder

Model
Extender

Model

Reflex

Rate Filter

Decision MakerExample Finder

Foci

Meaning
Finder

Model
Extender

Model

Reflex

Rate Filter

Example FinderDecision Maker

Four Useful Principles

● Self-Scaling
● Sparseness
● Gradual degradation
● Failure simplification

OK, but how hard is it to apply them?

Self-Scaling

● Use when you don't know the relationship
between the behavior you want and the
details of its implementation

● Decoupling through geometry:
– specification of behavior (units)
– implementation details (coordinate system)

Sparseness

● Use when device need to make non-
interfering decisions independently.

● Decoupling by making unwanted
interactions rare.

If at first you don't succeed, just try again.

Gradual Degradation

● Use when you don't understand or can't
control the environment.

● Decoupling by low sensitivity to
– Implementation details
– Parameter values
– Conditions of execution

Failure Simplification

● Use when you don't understand or can't
prevent failures

● Decouple by preferentially selecting
failure type

We're used to preventing failures.

What if we just manage their impact?

Failure Simplification
● These people are executing an

apparently impossible distributed
simulation algorithm.

Not all failures are important!

Spatial Computers

● Devices spread through space whose
ability to interact depends on geometry

(Bachrach & Beal '06)
Simulation Mica2 Motes

Amorphous Medium

Program space, not network (Beal '04)

Amorphous Medium

Program space, not network (Beal '04)

Amorphous Medium

Space

Time

Program space, not network (Beal '04)

Fail. Simp.: Aggregate Values

Information is lost, but failures change
summaries, rather than individuals.

Gradual Degradation:
Implementation Details

● Plane wave at different resolutions:

100

1,000

10,000

Self-Scaling: Neighborhood Ops

● Proto (Beal & Bachrach '06):
– Scales by increasing resolution

Sparseness: Symmetry Breaking

● PN Hierarchy (Beal '03)
– Sparse node initiation
– Fast stabilization to even distribution

Cognitive Architectures

● How can we build towards human-like
competence and flexibility?
– Example: communication bootstrapping

Symbol ChannelFoci

Meaning
Finder

Model
Extender

Model

Reflex

Rate Filter

Decision MakerExample Finder

Foci

Meaning
Finder

Model
Extender

Model

Reflex

Rate Filter

Example FinderDecision Maker

Sparseness: Self-Organization

● Biologically Plausible Symbolic Link:
– Encodings are sparse pulses on sparse wires
– Fast organization, burst transmission

Sparseness: Integration

● Communication Bootstrapping (Beal '02):
– Sparse sensory input, encodings
– Fast association, synchronized models

communication
channel

man
(recipient)

man
(recipient)

Self-Scaling: Interval Relations

● Incremental Interval Exa. Segmentation:
– Templates from Allen's time relations
– Scales by ignoring irrelevancies

Engineered Insensivity to
Parameters and Conditions

Coincidence Detector: Event Throttle:

Fail. Simp.: Pre-emptive Failure

● Coincidence Detector: if it's not a fast
success, it's a failure.
– Predictable flexibility for signal agreement,

BPSL, unidirectional-to-bidirectional link

Putting it all together...

● We now have a toolbox containing:
– four ways to simplify ugly interactions: self-

scaling, sparseness, gradual degradation,
failure simplification

– guidelines for where to use them
– examples of how to use them in two domains

What's next?

● Refining their application
– Proto/Amorphous Medium
– Communication Bootstrapping Architecture

● Where else can we apply them?
● What other tools do we need?

