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“Engineered Emergence”

Routine design of the behavior of 
aggregates of unreliable devices with 

complicated interaction patterns.

How do I clean up the mess?



  

Four Useful Principles

● Self-Scaling
● Sparseness
● Gradual degradation
● Failure simplification

OK, but how hard is it to apply them?



  

Spatial Computing



  

Amorphous Medium

Program space, not network (Beal '04)
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Failure Simplification: 
Aggregate Values

Information is lost, but failures change 
summaries, rather than individuals.



  

Gradual Degradation: 
Implementation Details

● Plane wave at different resolutions:
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Self-Scaling: Neighborhood Ops

● Proto (Beal & Bachrach '06): 
– Scales by increasing resolution



  

Sparseness: Symmetry Breaking

● Temporary leadership via 1/f noise



  

Cognitive Models
How might specialist parts learn to work 

together as a unified mind?
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HearingVision

Learning by Learning to 
Communicate
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Vocabulary agreement 
improves sensory prediction



  

Sparseness: Self-Organized 
Symbolic Communication



  

Self-Scaling: IIES

● Incremental capture of quasi-independent 
examples from highly correlated input



  

Gradual Degradation: Dossiers

Coincidence Detector: Event Throttle:



  

Failure Simplification:
Pre-emptive Failure

● Coincidence Detector: if it's not a fast 
success, it's a failure.



  

Contributions

● Four tools for simplifying ugly designs
– self-scaling, sparseness, gradual degradation, 

failure simplification

● Examples of use in two domains

Where else can we apply them?

Can we analyze them formally?

What other tools can we discover?


