

Principles for
Engineered Emergence

Jacob Beal
MIT CSAIL

“Engineered Emergence”

Routine design of the behavior of
aggregates of unreliable devices with

complicated interaction patterns.

How do I clean up the mess?

Four Useful Principles

● Self-Scaling
● Sparseness
● Gradual degradation
● Failure simplification

OK, but how hard is it to apply them?

Spatial Computing

Amorphous Medium

Program space, not network (Beal '04)

Amorphous Medium

Program space, not network (Beal '04)

Amorphous Medium

Space

Time

Program space, not network (Beal '04)

Failure Simplification:
Aggregate Values

Information is lost, but failures change
summaries, rather than individuals.

Gradual Degradation:
Implementation Details

● Plane wave at different resolutions:

10,000

1,000

100

Self-Scaling: Neighborhood Ops

● Proto (Beal & Bachrach '06):
– Scales by increasing resolution

Sparseness: Symmetry Breaking

● Temporary leadership via 1/f noise

Cognitive Models
How might specialist parts learn to work

together as a unified mind?

SocialSocialLanguageLanguage

MotorMotor

SpatialSpatial

HearingHearing
VisionVision

13

HearingVision

Learning by Learning to
Communicate

14

Vocabulary agreement
improves sensory prediction

Sparseness: Self-Organized
Symbolic Communication

Self-Scaling: IIES

● Incremental capture of quasi-independent
examples from highly correlated input

Gradual Degradation: Dossiers

Coincidence Detector: Event Throttle:

Failure Simplification:
Pre-emptive Failure

● Coincidence Detector: if it's not a fast
success, it's a failure.

Contributions

● Four tools for simplifying ugly designs
– self-scaling, sparseness, gradual degradation,

failure simplification

● Examples of use in two domains

Where else can we apply them?

Can we analyze them formally?

What other tools can we discover?

