
Continuous Semantics of Proto

Jake Beal
January, 2006

(Joint work w. Jonathan Bachrach)

Outline

● Amorphous Medium
● Primitives, Abstraction, & Composition
● Managing space and time

– Operations with spatial extent

– Conditionals

– State

– Error handling

● Putting it all together

Many network problems are spatial

● Exa: sensor/actuator networks, smart materials,
cooperative robotics, biofilms ...

Many network problems are spatial

Approx. space w. network like this...

Many network problems are spatial

Approx. space w. network like this...this...

Many network problems are spatial

Approx. space w. network like this...this...or this?

We shouldn't have to care!

Amorphous Medium

● Compact manifold with a device at every point
– Lagged internal state visible to neighbors

Ph34r th3 Unc0nt4bility!

X

x

nbrs(x)

Fields

F: X → value

2
-7

“foo”
ERROR

Primitives & Evaluation

2

2

Primitives & Evaluation

2

2

2

Operators

op

inputs (ordered)

outputs (ordered)

implicit outputimplicit input

Operators

+

2 6
1

8
7

Operators

floor

2.2
1.2

2
1

0.2

Operators

sense

:light

1
0

act

:red

0.9

0.9

environment environment

Composition

sense

act

:red

(act :red (sense :light))

:light

Composition

sense

act

:red

(act :red (sense :light))

:light

:red 1

:light

0

1
0

Abstraction: λ

*

+

*

(λ (x y) (sqrt (+ (* x x) (* y y))))

sqrt

λ:

16 12

Abstraction: λ

*

+

*

(λ (x y) (sqrt (+ (* x x) (* y y))))

sqrt

λ:

λ

9

20
15

16 12

Abstraction: def

*

+

*

(def foo (x y)

 (sqrt (+ (* x x) (* y y))))

sqrt

foo:

foo

9

20
15

Abstraction: let

*

+/

(let ((x (/ 4 f)) (y (+ f 1))) (* x y))

let:

λ:

4 f 1

let:

Abstraction: let

*

+/

(let ((x (/ 4 f)) (y (+ f 1))) (* x y))

λ:

4 f 1

3
5

2
1

12
4

6
5

4

Operations with Spatial Extent

Implicit communication in reductions over nbr vals

Ph34r th3 Unc0nt4bility!

x

nbrs(x)

nbrval gathers neighbor values

(nbrval f) → field of fields of nbr values

nbrval

1 2

1 2

Quantifiers summarize nbr values

Available Quantifiers: limsup, liminf,
integral, forall, exists

limsup

1
2

1 2

reduce-nbrs encapsulates both

(reduce-nbrs (+ f 3) liminf)

+

nbrvalnbrvalreduce-nbrs:

liminf

3f

32

5

4

7

5

32
4

7

Other spatial operations

● nbr-dist

● nbr-lag

● random

Simple Conditional: if

72

if

f

(if f 2 7)

Simple Conditional: if

72

if

f

(if f 2 7)

#F
#T 2 7

7
2

The problem with if

#T

if

f

(if f (reduce-nbrs f forall) #T)

reduce-nbrs
(forall)

The problem with if

#T

if

f

(if f (reduce-nbrs f forall) #T)

#T

reduce-nbrs
(forall)

#F
#T

#F
#T

#T
#T#F

restrict

restrict

#F 6
#T

6

Complex Conditional: where
#T

if

f

(where f (reduce-nbrs f forall) #T)

reduce-nbrs
(forall)

restrict

where:

restrict

not

Complex Conditional: where
#T

if

f

(where f (reduce-nbrs f forall) #T)

reduce-nbrs
(forall)

restrict

where:

restrict

not

#T

#T
#T

#F

#T

#T #F
#T

State: delay

Time finally appears!

D

clip

delay:

ifdef

State: delay

Time finally appears!

D

clip

delay:

ifdef

52

5

5

State: delay

Time finally appears!

D

clip

delay:

ifdef

5

2

3

2
5

2
5

State: delay

Time finally appears!

D

clip

delay:

ifdef

51

3

3

3

(letfed ((i 0 (+ i f))) i)

+

0

letfed:

delay

State: letfed
f

λ:

(letfed ((i 0 (+ i f))) i)

+

0

letfed:

delay

1

0

3

State: letfed
f

λ:

4

3

Error Handling

2
-7

“foo”
ERROR

What happens when an error is localized?

Conditions are values, not flow control.

Putting it all together: gradient

(def gradient (src)
 (letfed ((n ∞ (if src 0
 (+ (reduce-nbrs n liminf)
 (reduce-nbrs nbr-dist limsup)))))
 n))

nbr-
dist

if

0

∞

+

gradient:

letfed:

λ:

reduce-nbrs
(limsup)

reduce-nbrs
(liminf)

delay

