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Outline

● Amorphous Medium
● Primitives, Abstraction, & Composition
● Managing space and time

– Operations with spatial extent

– Conditionals

– State

– Error handling

● Putting it all together



Many network problems are spatial

● Exa: sensor/actuator networks, smart materials, 
cooperative robotics, biofilms ...
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Many network problems are spatial

Approx. space w. network like this...this...or this?

We shouldn't have to care!



Amorphous Medium

● Compact manifold with a device at every point 
– Lagged internal state visible to neighbors

Ph34r th3 Unc0nt4bility!

X

x

nbrs(x)



Fields

F: X → value
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Primitives & Evaluation
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Primitives & Evaluation
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Operators

op

inputs (ordered)

outputs (ordered)

implicit outputimplicit input



Operators
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Operators
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Operators

sense

:light
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Composition

sense

act

:red

(act :red (sense :light))

:light



Composition
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Abstraction: λ

*

+

*

(λ (x y) (sqrt (+ (* x x) (* y y))))

sqrt

λ:
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Abstraction: def

*

+

*

(def foo (x y) 

  (sqrt (+ (* x x) (* y y))))

sqrt

foo:

foo
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Abstraction: let

*

+/

(let ((x (/ 4 f)) (y (+ f 1))) (* x y))

let:

λ:

4 f 1



let:

Abstraction: let

*

+/

(let ((x (/ 4 f)) (y (+ f 1))) (* x y))

λ:

4 f 1
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Operations with Spatial Extent

Implicit communication in reductions over nbr vals

Ph34r th3 Unc0nt4bility!
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nbrval gathers neighbor values

(nbrval f) → field of fields of nbr values

nbrval

1 2

1 2



Quantifiers summarize nbr values

Available Quantifiers: limsup, liminf, 
integral, forall, exists

limsup

1
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reduce-nbrs encapsulates both

(reduce-nbrs (+ f 3) liminf)

+

nbrvalnbrvalreduce-nbrs:

liminf
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Other spatial operations

● nbr-dist

● nbr-lag

● random



Simple Conditional: if

72

if

f

(if f 2 7)



Simple Conditional: if
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(if f 2 7)
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The problem with if

#T

if

f

(if f (reduce-nbrs f forall) #T)

reduce-nbrs
(forall)



The problem with if

#T

if

f

(if f (reduce-nbrs f forall) #T)

#T

reduce-nbrs
(forall)
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restrict

restrict

#F 6
#T
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Complex Conditional: where
#T

if

f

(where f (reduce-nbrs f forall) #T)

reduce-nbrs
(forall)

restrict

where:

restrict

not



Complex Conditional: where
#T
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State: delay

Time finally appears!

D

clip

delay:

ifdef
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State: delay

Time finally appears!

D

clip

delay:

ifdef
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(letfed ((i 0 (+ i f))) i)

+

0

letfed:

delay

State: letfed
f

λ:



(letfed ((i 0 (+ i f))) i)

+

0

letfed:

delay
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Error Handling

2
-7

“foo”
ERROR

What happens when an error is localized?

Conditions are values, not flow control.



Putting it all together: gradient

(def gradient (src)
  (letfed ((n ∞ (if src 0 
                  (+ (reduce-nbrs n liminf)
                     (reduce-nbrs nbr-dist limsup)))))
    n))

nbr-
dist

if

0

∞

+

gradient:

letfed:

λ:

reduce-nbrs
(limsup)

reduce-nbrs
(liminf)

delay


