Metrology & Predictive Design For Synthetic Biology

Jacob Beal

November, 2013

Bringing Wet & Dry Together...

Outline

Vision and Motivation

- Proto BioCompiler
- Calibrating Flow Cytometry
- Building EQuIP Models
- Prediction & Validation

Bioengineering should be like document preparation:

• Breaking the complexity barrier:

- Multiplication of research impact
- Reduction of barriers to entry

*Sampling of systems in publications with <u>experimental circuits</u>

Organism Level Description

This gap is too big to cross with a single method!

TASBE tool-chain

[[]Beal et al, ACS Syn. Bio. 2012]

A high-level program of a system that reacts depending on sensor output

(def simple-sensor-actuator ()
 (let ((x (test-sensor)))
 (debug x)
 (debug-2 (not x))))

Mammalian Target E. coli Target

Resulting cells demonstrating expected behavior

Induced

Mammalian Target

Uninduced

Induced

E. coli Target

Outline

- Vision and Motivation
- Proto BioCompiler
- Calibrating Flow Cytometry
- Building EQuIP Models
- Prediction & Validation

Focus: BioCompiler

Stablizes at decay = production

• Operators translated to motifs:

Unoptimized: 15 functional units, 13 transcription factors

Unoptimized: 15 functional units, 13 transcription factors

- Barrier: Availability of High-Gain Devices
 - Emerging Solution: combinatorial device libraries based on TALs, ZFs, miRNAs
- Barrier: Characterization of Devices
 - Emerging solution: TASBE characterization method
- Barrier: Predictability of Biological Circuits
 - Emerging solution: EQuIP prediction method

- Vision and Motivation
- Proto BioCompiler
- Calibrating Flow Cytometry TASBE Method
- Building EQuIP Models •
- Prediction & Validation

[Beal et al., Technical Report: MIT-CSAIL-TR-2012-008, 2012]

Unit mismatch!

How Flow Cytometry Works

Challenges:

- Autofluorescence
- Variation in measurements
- Spectral overlap
- Time Contamination

- Lots of data points!
- Different protein fluorescence
- Individual cells behave (very) differently

Run beads every time: flow cytometers drift up to 20 percent! Also can detect instrument problems, mistakes in settings

ENCE BBN Technologies

Compensating for Autofluorescence

Negative control used for this

Compensating for Spectral Overlap

Yellow (FITC-A a.u.) Red (PE-Tx-Red-YG-A a.u.)

Color Compensation Model

Strong positive control used for each color Note: only linear when autofluorescence subtracted

Translating Fluorescence to MEFL

Raytheon

BBN Technologies

- Others obtained from triple/dual constitutive controls
- Must have exact same constitutive promoter!
- Must have a FITC control protein!

Outline

- Vision and Motivation
- Proto BioCompiler
- Calibrating Flow Cytometry
- Building EQuIP Models
- Prediction & Validation

TASBE Characterization Method

Transient cotransfection of 5 plasmids Calibrated flow cytometry Analysis by copy-count subpopulations Avoids all problems with adjacency, plasmid size, sequence validations

• Variation appears to be independent

Result: Input/Output Relations

Results \rightarrow division rate, mean expression time, production scaling factor

EQuIP model

Model = first-order discrete-time approximation

Outline

- Vision and Motivation
- Proto BioCompiler
- Calibrating Flow Cytometry
- Building EQuIP Models
- Prediction & Validation

EQuIP Prediction

Incremental Discrete Simulation

1.8x

1.7x

2.2x

1.5x

1.1x

1.81x

1.30x

1.56x

1.75x

1.74x

High Quality Cascade Predictions

TAL14-LmrA

TAL21-LmrA

LmrA-TAL14

LmrA-TAL21

TAL21-TAL14

Circles = EQuIP predictions Crosses = Experimental Data

Automation supports design and debugging of biological devices, sensors, actuators, circuits

- BioCompiler automates regulatory network design
- TASBE method calibrates flow cytometry data
- Cotransfected test circuits give good models
- EQuIP accurately predicts cascade behavior from models of individual repressors

Looking forward:

- Real measurements \rightarrow good engineering
- Bigger, better circuits on more platforms [multiple manuscripts in preparation]

Acknowledgements:

Raytheon BBN Technologies

Aaron Adler Joseph Loyall Rick Schantz Fusun Yaman PliT

Ron Weiss Jonathan Babb Noah Davidsohn Ting Lu

Douglas Densmore Evan Appleton Swapnil Bhatia Traci Haddock Chenkai Liu Viktor Vasilev

Characterization Tools Online!

https://synbiotools.bbn.com/

<page-header> My accourt 2 (grout for a second s</page-header>	https://synbiotools.bbn.com	\[\] \? Coogle \(Q) \] \[\] \[
<section-header> Navigation Navigation Scharacterization Workfow Documentation KAX machine KAX machine KAX machine KAX machine Scharacterization Machine description List all my colors models Characterization Kateriation Characterization Models Characterization Kateriation Characterization Kateriation Kateriation Characterization Kateriation Katerization Kateriation Kateriation Characterization Kateriation Kateriation Kateriation Kateriation Kateriation Kateriation Kateriation (Characterization Kateriation Ka</section-header>	ASBE synbi	My account Log out
 Characterization Workflow Documentation FACS machines Senter a new FACS machine description List all my FACS machines Color Models Create a control set List all my control sets List all my color models Characterization Experiment Enter data Enter data Enter data Enter data Enter data Enter data Senter at all my processed experiments List all my processed experiments Socompiler Kun List previous results 	Navigation	Welcome Synthetic Biology User!
 FACS machines Enter a new FACS machine description List all my FACS machines You can use the tools on this site either as an anonymous guest user or as a registered user. To work as a guest user, log in with username "guest" and password "guest". Guests have full access to all tools, but their data and results are visible to all other guest users. If you register for an account, then you can use the tools privately, with your data held securely from all other users. If you register for an account, then you can use the tools privately, with your data held securely from all other users. If you register for an account, then you can use the tools privately, with your data held securely from all other users. If you register for an account, then you can use the tools privately, with your data held securely from all other users. If you register for an account, then you can use the tools privately, with your data held securely from all other users. If you register for an account, then you can use the tools privately, with your data held securely from all other users. If you register for an account, then you can use the tools privately, with your data held securely from all other users. If you register for an account, then you can use the tools privately, with your data held securely from all other users. It is all my coorrements List all my processed experiments Viou can also find Characterization Experiments You can also find Characterization Workflow Documentation explaining how these tools work, and details on interpreting and debugging their results. BioCompiler List previous results 	Characterization Workflow Documentation	Welcome to the BBN Synthetic Biology Tools site.
 List all my FACS machines Color Models Create a control set List all my control sets Characterization Experiment List all my processed experiments Koncompiler Nou can also find Characterization Workflow Documentation explaining how these tools work, and details on interpreting and debugging their results. The Proto BioCompiler is also available. This tool generates optimized genetic regulatory network designs from specifications written in a high-level programming language. A thorough explanation of the BioCompiler can be found in this paper. 	 FACS machines Enter a new FACS machine description 	You can use the tools on this site either as an anonymous guest user or as a registered user.
 Color Models Create a control set List all my control sets List all my control sets List all my control sets Characterization Experiment Creating a FACS Machine Creating a Color Model Analyzing Characterization Experimental datasets List all my processed Analyzing Characterization Experiments Vou can also find Characterization Experiments Vou can also find Characterization Workflow Documentation explaining how these tools work, and details on interpreting and debugging their results. BioCompiler Run List previous results The Proto BioCompiler is also available. This tool generates optimized genetic regulatory network designs from specifications written in a high-level programming language. A thorough explanation of the BioCompiler can be found in this paper. 	 List all my FACS machines 	 To work as a guest user, log in with username "guest" and password "guest". Guests have full access to all tools, but their data and results are visible to all other guest users.
 List all my color models The following tools analysis tools are in alpha testing: Characterization Experiment Creating a FACS Machine Creating a Color Model Analyzing Characterization Experiments List all my processed experiments List all my processed experiments Vau can also find Characterization Workflow Documentation explaining how these tools work, and details on interpreting and debugging their results. The Proto BioCompiler is also available. This tool generates optimized genetic regulatory network designs from specifications written in a high-level programming language. A thorough explanation of the BioCompiler can be found in this paper. 	 Color Models Create a control set List all my control sets 	• If you register for an account, then you can use the tools privately, with your data held securely from all other users.
 Characterization Experiment Enter data List all my experimental datasets List all my processed experiments Vou can also find Characterization Workflow Documentation explaining how these tools work, and details on interpreting and debugging their results. BioCompiler Run List previous results The Proto BioCompiler is also available. This tool generates optimized genetic regulatory network designs from specifications written in a high-level programming language. A thorough explanation of the BioCompiler can be found in this paper. 	 List all my color models 	The following tools analysis tools are in alpha testing:
experimental datasets You can also find Characterization Workflow Documentation explaining how these tools work, and details on interpreting and debugging their results. • BioCompiler The Proto BioCompiler is also available. This tool generates optimized genetic regulatory network designs from specifications written in a high-level programming language. A thorough explanation of the BioCompiler can be found in this paper.	 Characterization Experiment Enter data List all my 	 Creating a FACS Machine Creating a Color Model Analyzing Characterization Experiments
 BioCompiler Run List previous results The Proto BioCompiler is also available. This tool generates optimized genetic regulatory network designs from specifications written in a high-level programming language. A thorough explanation of the BioCompiler can be found in this paper. 	 experimental datasets List all my processed experiments 	You can also find Characterization Workflow Documentation explaining how these tools work, and details on interpreting and debugging their results.
	 BioCompiler Run List previous results 	The Proto BioCompiler is also available. This tool generates optimized genetic regulatory network designs from specifications written in a high-level programming language. A thorough explanation of the BioCompiler can be found in this paper.

• On first use, you will have to terms of service

• Your data is secure, and can't be shared on site.

• FireFox recommended; Chrome has an imagedisplay bug.

Register: individual accounts or group account? Anonymous access also available (but not private)