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or: scalability and robustness cheap!

150 devices2000 devices



  

Agenda

● Discrete Approximation
● Self-Healing Distance-To
● Proving Self-Stablization
● Correction Rate vs. Consistency



  

Global v. Local v. Discrete

Compiler

Kernel

Global

Local

Discrete

Program



  

Gradual Degradation

● Plane wave at different resolutions:

100

1,000

10,000



  

Automatic Scaling

● Target tracking on 20 to 10,000 nodes:



  

Discrete Model

● Dozens to billions of simple, unreliable agents
● Distributed through space, communicating by 

local broadcast
● Agents may be added or removed
● No guaranteed global services (e.g. time, 

naming, routing, coordinates)
● Relatively cheap power, memory, processing
● Partial synchrony



  

Kernel

● Responsibilities:
● Emulate amorphous medium
● Time evolution
● Interface with sensors, actuators
● Viral reprogramming

● Current platforms: simulator, Mica2 Mote, 
McLurkin's SwarmBots, Topobo, iRobot 
Create + Meraki



  

Discrete Space

● Each devices represent nearby space
● Best-effort space-time metrics from sensors
● Each summary has a discrete equivalent



  

Discretizable Neighborhood Ops

● Space-Time Metrics:
● nbr-range, nbr-angle, nbr-vec, is-self
● nbr-lag, nbr-delay
● density, infinitesimal, curvature
● nbr

● Summary functions:
● min-hood, max-hood, any-hood, all-hood
● Same four “+” hole at self: e.g. min-hood+
● int-hood

● Abstraction breakers: sum-hood, fold-hood



  

Neighborhood Abstraction

● Aggregate access to best-effort estimate of 
neighbor state, space-time properties

● Neighbors decay without updates

neighbor values

exposed state

Program

UID Timer Area Range Lag Exposed State

ME N/A 0.32 5.6 1.1 ...

703 1 0.43 0.3 0.6 ...

398 3 0.21 8.7 1.4 ...

... ... ... ... ... ... receive

half-phase 
send

decay



  

Sensors & Actuators

● Indirect access via space-time operators
● Direct access by extending kernel
● Virtual sensors/actuators can connect to other 

programs running in parallel
● I/O must be interpretable as CT stream of values
● e.g. interface with a high-level planner with sensors 

“plan-ready” and “best-plan-to-take”



  

Agenda

● Discrete Approximation
● Self-Healing Distance-To
● Proving Self-Stablization
● Correction Rate vs. Consistency



  

Distance-To (A.K.A. “gradient”)

Common SA/SO building block
● Pattern Formation

● Nagpal, Coore, Butera

● Distributed Robotics
● Stoy, Werfel, McLurkin

● Networking
● DV routing, Directed Diffusion

Need to adapt to changes

McLurkin, 2004

Nagpal, 2001

Intanagonwiwat, et al. 2002



  

Calculation By Relaxation
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Calculation By Relaxation
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Distance-To + Communication Lag

cx y ,t =gx t−x y ,t d x , y 

gx t ={ 0 if x ∈St
min {cx y ,t ∣ y ∈N x t } if x ∉St}
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Rising Value Problem
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Rising Value Problem

6

7

3

7

4

0

4
3

4

4

4

4

4

7

8

5

8

5

1
cx y ,t =gx t−x y ,t d x , y 

gx t ={ 0 if x ∈St
min {cx y ,t ∣ y ∈N x t } if x ∉St}



  

Rising Value Problem
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Rising Value Problem
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Rising Value Problem
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Rising Value Problem
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Rising Value Problem

B

A

distance

va
lu

e

Lag has a minimum, distance does not!



  

Previous Algorithms

● “Invalidate and Rebuild”
● GRAB: single source, rebuild on high error
● TTDD: static subgraph, rebuild on lost msg.

● “Incremental Repair”
● Hopcount: Clement & Nagpal, Butera
● Distorted Measure: Beal & Bachrach

(naïve generalization of hopcount to continuous)

Can't exploit distance info in large nets



  

CRF-Distance-To: Local Deconstraint

● Self-stabilization in O(diameter)
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CRF-Distance-To: Local Deconstraint

● Self-stabilization in O(diameter)

c 'x y ,t =cx y ,t x y ,t ∆t⋅vx t 

cx y ,t =gx t−x y ,t d x , y 

gxt={ 0 if x ∈St
min {cxy ,t∣ y ∈N'x t} if x ∉St ,N'x t≠∅

gx tv0⋅∆t if x ∉St ,N'x t=∅}
N'x t={y∈Nx t∣c'x y ,t≤gx t−∆t}

vx t ={0 if x ∈St
0 if x ∉St  , N 'x t ≠∅
v0 if x ∉St  , N 'x t =∅}



  

CRF Rising Values
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CRF Rising Values
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CRF Rising Values
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CRF Rising Values
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CRF Rising Values
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CRF Rising Values

25

22

23

7

4

0

15
3

4

4

4

4

4

7

8

5

23

5

1

- zero at source
- rise at v

0
 with relaxed constraint

- otherwise snap to constraint
v

0
=5



  

CRF Rising Values
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Simulated CRF-Distance-To



  

Experimental Setup

One close pair



  

Experimental Results: Falling



  

Experimental Results: Rising



  

Generalized CRF



  

Feed-Forward Self-Stabilization

A composition of self-stabilizing components with 
no feedback is itself self-stabilizing in the sum of 
the times along the longest path

Desti-
nation

Source



  

Agenda

● Discrete Approximation
● Self-Healing Distance-To
● Proving Self-Stablization
● Correction Rate vs. Consistency



  

Self-Stabilization vs. Self-Healing

An algorithm is self-stabilizing iff, given an 
arbitrary starting state, it converges to a correct 
state in finite time.

An algorithm is self-healing if it always 
incrementally adjusts its state towards a more 
correct state.



  

Proofing Self-Stablization for CRF

Let's work this proof out together...



  

Agenda

● Discrete Approximation
● Self-Healing Distance-To
● Proving Self-Stablization
● Correction Rate vs. Consistency



  

Perfection is expensive and “twitchy” 

But most applications don't need perfection...

proto -n 1000 -r 10 "(all (mov (* 0.1 (disperse))) (green (distance-to (sense 1))))" -l -s 1 -m -w



  

Making distance-to tolerate error

● Hysteresis?
● Past a threshold, unbounded communication

● Low-pass filtering?
● Worse!  Value change != msg cost

● “Elastic” connections!
● Absorb error incrementally



  

Perturbations & Absorption

Attemped Perfection Incremental Error Absorption
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Perturbations & Absorption
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Perturbations & Absorption

Attemped Perfection Incremental Error Absorption



  

Managing error through slope

● Goal: ε-acceptable values

● Add local constraint via slope:

→ “flexible” distance-to

(allow small distortion for rising value problem)

g x t ⋅1−g x t  g x t ⋅1

s x  t=max { g x t−t −g y  t x , y
d  x , y , t x , y 

∣y∈N x  t }



  

Getting the kinks out

● Flexed regions cannot absorb error
● Want eventual correctness



  

Getting the kinks out

● Flexed regions cannot absorb error
● Want eventual correctness

Solution: occasional ε=0 steps



  

Flex-Distance-To Algorithm (simplified)

● Sources take g
x
(t)=0

● Else measure maximum slope and minimum 
distance through neighbors (w. r/δ distortion):
● If value is more than 2x lowest value through 

neighbor, snap to slope=1 
● Else if slope is not ε-acceptable, make ε-acceptable 

– Once every g
x
(t) updates, use ε=0



  

Flex-Distance-To vs. CRF-Distance-To

proto -n 1000 -r 10 -led-stacking 2 "(flex-distance-to-demo 0.3 10 0.2 1 1)" -l -s 1 -w -m



  

Perturbations affect limited range



  

Even infrequent repair helps



  

A little tolerance goes a long way



  

Summary

● Appropriately choosen amorphous medium 
operations discretize naturally.

● Self-healing algorithms adapt gracefully to 
changes in environment or program state.

● Feed-forward compositions of self-stabilizing 
algotihms are self-stabilizing.

● Healing rate and consistency can be traded off.
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Tomorrow: Moving Devices

found a 
victim!

rescue 
on the 
way!

Robot motion = vector fields



  

Further Questions

● What is the optimal replacement policy when 
there are more neighbors than table memory?

● What is the optimal decay rate?
● How much energy can be saved by throttling 

update and decay rates?
● What are good ways to expose the 

cost/responsiveness tradeoff to the 
programmer?
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Further Questions

● Are the neighborhood summary functions a 
cover of all useful approximable functions?

● Are there other basic space-time metrics 
needed for neighborhood computations?

● What is the best way to represent random 
number generation in continuous space-time?
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