
Current Frontiers

Jacob Beal
Lecture 5 of 5 on Spatial Computing

ISC-PIF Summer School, 2009

Agenda

● Predicting Approximation Error
● Dynamic Processes
● Compiling to Bacteria
● Local Checkability

The Challenge of Composition

[Beal, et al. '08]

Discretization Open Questions

● Under what conditions does continuous
convergence imply discrete convergence?

● How do convergence properties compose?
● Given a continuous program and desired error

bounds, what discretization will suffice?
● Given a continuous program and a

discretization, what will the error bounds be?

Distance-To

Distance from each device to nearest source

Distance in graph is proxy for real distance

0

7

3

7

4

0

4
3

4

4

4

4

4

7

8

5

8

5

1

Geometric Program: Bisector

BA

Geometric Program: Bisector

BA

Geometric Program: Bisector

BA

Geometric Program: Channel

Desti-
nationSource

(cf. Butera)

Geometric Program: Channel

Desti-
nationSource

(cf. Butera)

Geometric Program: Channel

Desti-
nationSource

(cf. Butera)

Geometric Program: Channel

Desti-
nationSource

(cf. Butera)

Discretization Error

Prediction:

Experimental Strategy

● Distribute n devices randomly in area A,
communicating in r range, for density ρ

● Perfect range information, no failures
● Survey wide range of parameters

– 100 trials/combination, ~20K total

Four Domains of Behavior

Four Domains of Behavior

Density affects error monotonically

Density = 6.6 to 209.4

Making an Empirical Model

Standard DeviationMean

Model Fit

Source shape matters
density=10.4 density=83.4

Understanding the Transient

Transient Elimination

Point or “true depth” sources eliminate
transient

Model Predicts Channel/Bisector

Further Questions

● What is a good model for the initial transient?
● How can the effect of source/medium shape be

incorporated into the model?
● Can error prediction for gradient-based

programs be automated?
● What other families of primitives can be

predicted and composed?
● Can composing primitives ever reduce error?

Agenda

● Predicting Approximation Error
● Dynamic Processes
● Compiling to Bacteria
● Local Checkability

[Beal, in submission]

Dynamically Allocate State

Many processes must create state (e.g. objects,
processes) in response to their environment

Consider tracking flocks of birds...

Definition of Process

● Let p be an executing
instance of a program at a
point m

● p' on m' ∈ N(m) if in the
same process if p can use
state from p'

● Specifiable by 5 behaviors:
creation, growth, sharing,
computation, termination

Problem of Independent Creation

Are the visible birds part of the same flock?

UIDs can't distinguish processes

Theorem: if instances of processes form an
equivalence class ~, no algorithm for creating
program instances exists that can guarantee safe
creation in less than O(diameter/c) time
● Proof sketch:

● Time bound → space-like separation possible
● choice of ~ only affected by causally related points
● Algorithm must fail on one of:

– m and m' create P
– m and m' create P'
– m creates P, m' creates P'

Solution: dynamically determined extent

Proposed new proto construct:

 (procs (elt sources)

 ((var init evolve) ...)

 (same? run? &optional terminate?)

 . body)

Example: tracking a flock

flock identity = similarly moving birds
(def close-vec (base other err)
 (< (len (- base other)) (* err (len base))))

(def track-flocks ()
 (procs (bird-vec bird-vecs)
 ((flock-vec
 bird-vec
 (average (filter
 (lambda (v) (close-vec flock-vec v 0.1))
 bird-vecs))))
 ((close-vec flock-vec (nbr flock-vec) 0.1)
 (find-if (lambda (v) (close-vec flock-vec v 0.1))
 bird-vecs))
 (measure-shape)))

Implication: self-crossing!

Self-crossing flock Coherent motion processEquivalence class process

Example: reporting on flocks

flocks calculates reporting UID after forming
(report-data-stream (data-set base)
 (procs (data data-set)
 ((uid (1st data) uid)
 (src true (find uid (map 1st data-set)) diameter))
 ((= uid (nbr uid))
 (dilate src diameter))
 (channelcast
 src base 2
 (2nd (find uid data-set :key 1st)))))

Example: finding the nearest nest

Processes compete on distance to nest

Further Questions

● What are good primitives for expressing
dynamic process formation?

● What sorts of dynamic process-based
algorithms are useful for various tasks?

● How can reportable identity be tracked for a
process that splits and rejoins its parts?

Agenda

● Predicting Approximation Error
● Dynamic Processes
● Compiling to Bacteria
● Local Checkability

[Beal & Bachrach, '08]

Amorphous Medium

●Continuous space & time
●Infnite number of devices
●See neighbors' past state

Approximate with:
●Discrete colony of cells
●Chemicals transmit state

neighborhood

device

Why spatial computing?

(UT Austin) (v. fscheri Genome Project)

Pointwise Global Diferentiated

Compiling “band-detect”
Proto Weiss bacteria

(def band-detector (signal lo hi)
 (and (> signal lo)
 (< signal hi)))

(let
 ((v (diffuse (aTc) 0.8 0.05)))
 (green (band-detect v 0.2 1)))

HLLs & Bacteria

● High-level languages:
– Shorter programs mean less efcient code
– Optimizing compilers can help

● Bacteria
– Extremely tight resource constraints
– Inherently parallel chemical execution

Synthetic Biology Vision

Spatial Computer
“Can I have this
network of parts?”

“Here's a set of parts,
1-N, that implement
your network”

D
S

Band detect: behavior
Proto Weiss bacteria

Band detect: code
Proto Weiss bacteria

simpler, more reusable

(def band-detector (signal lo hi)
 (and (> signal lo)
 (< signal hi)))

(let
 ((v (diffuse (aTc) 0.8 0.05)))
 (green (band-detect v 0.2 1)))

BioBrick Primitives

In Proto:

(def band-detector (signal lo hi)
 (and (> signal lo)
 (< signal hi)))

(let
 ((v (diffuse (aTc) 0.8 0.05)))
 (green (band-detect v 0.2 1)))

● Logical: AND, OR, NOT
● Flow control: IF, MUX
● Arithmetic: +, -, *, /, log, exp, ...
● Relational: >, <, =

Two possible implementations:
● Regulation
● Reaction C+DE

Proto to GRNs: First Steps

A B

✓
✓

Digital Arithmetic is Expensive

and

+

● 1 operation

● 5 operations/bit

Use digital for booleans, analog for numbers

Arithmetic

● c: constitutive expression
● (+ A B): same chemical represents both
● (- A B): A+BC

● (log A), (exp A): lookup tables
– approximate w. summary of > tests?

● (* A B), (/ A B): log add, subtract

Range? How many bits?

Relational: AD conversion

● A+BC

– (< A B)

– (> A B)

– (= A B)

– (!= A B)

A outB

A outB

A outB

A outB

Naïve Implementation

Resources Required

Resource Hand Tuned Naive

Signal-carrying chemical 3 11

Protein coding sequence 6 14

Promoters 5 14

Intercellular messengers 2 2

Chemical reactions 0 2

Optimize: Constant Elimination

Optimize: Algebraic Simp. (1/2)

Optimize: Algebraic Simp. (2/2)

Optimize: Dead Code Elimination

Optimize: Copy Propagation

Optimize: Use-Defnition Analysis

Resources Required

Resource Hand Tuned Naive Optimized

Signal-carrying chemical 3 11 3

Protein coding sequence 6 14 6

Promoters 5 14 5

Intercellular messengers 2 2 2

Chemical reactions 0 2 0

Further Questions

● How many bits precision can be supported?
● What are good biological implementations of

other operations?
● Are there useful bio-specific optimizations?
● How can timing be managed?
● Will it work?

Agenda

● Predicting Approximation Error
● Dynamic Processes
● Compiling to Bacteria
● Local Checkability

[Yamins, '08]

Model

Motivation: morphogenesis & high cost of state
● Crystalline network of asynchronous FSMs
● Boundary & directions are distinguishable
● r-hop neighborhood

n devices ⋅ S states → set C
n,S

 of configurations

2 01 1 01 2

r = 1

Local Checkability

Let T be a pattern. A binary function Θ: N
r
 → {T,F}

over neighborhoods of radius r is a Local Check
Scheme (LCS) for T if:

● For all X in C
S
, Θ(X) = 1 → X ∈ T

● For all n, such that T ∩ C
n,S
≠∅, there is X ∈

C
n,S

 such that Θ(X)=1

The Local Check Radius of T is minimum r for
which an LCS exists. LCR(T) = ∞ → not locally
checkable

Self-stabilization → Local Checkability

Theorem: If F is a self-stabilizing algorithm that
makes T using r neighborhoods, then r >= LCR(T)

Corollary: For all repeat patterns T
q
,

 LCR(T
q
)<=|q|/2

Intuition: if you can't locally check, the algorithm
can't know if it's finished.

Local Checkability → Self-Stabilization

Proof by construction:
● For “Single-choice” patterns:

● Given LCR(T) = r, choose a neighborhood of 2r
● If left neighbors are correct, set self to match
● Otherwise, do nothing

● All others use a self-organizing turing machine
that adds transient “marker” states to make the
pattern “single choice.”

Example of “Single-Choice” Pattern

Repeat Pattern: LCR <= 2

Rules: ? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

else do nothing

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ?

Example of Self-Organizing Turing Machine

● Pattern: T
100

T
1000

● 10 rules, 3 extra states
● Example of execution:

2D Pattern Primitives

● Repeat patterns
● Proportionate patterns
● Fractal-generatable curves

Further Questions

● Are there other useful basis patterns?
● Can these results be extended to irregular

spaces or amorphous networks?
● What bounds are there for logarithmic state?
● What is an appropriate language for expressing

the family of locally checkable patterns?

What have we learned?

● Amorphous Medium abstraction simplifies
programming of space-filling networks

● Appropriate space and time operations make it
easy to compile global descriptions into local
actions that approximate the global

● Geometric metaphors allow complex behaviors
to be programmed with very short programs.

● Self-healing programs adjust to changes, and
behave predictably when composed together.

● Spatial computing is filled with open questions
and new frontiers for research.

Lecture 1: Spatial Computers & Fields

Lecture 2: Continuous Space-Time Programs

Pointwise Restriction

Feedback Neighborhood

+ restrict

+

741

delay

48

any-hoodnbr

150 devices 2000 devices

Lecture 3: Discrete Approximation & Self-Healing

Lecture 4: Moving Devices

found a
victim!

rescue
on the
way!

Robot motion = vector felds

Lecture 5: Current Frontiers

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75

