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Agenda

● Predicting Approximation Error
● Dynamic Processes
● Compiling to Bacteria
● Local Checkability



The Challenge of Composition

[Beal, et al. '08]



Discretization Open Questions

● Under what conditions does continuous 
convergence imply discrete convergence?

● How do convergence properties compose?
● Given a continuous program and desired error 

bounds, what discretization will suffice?
● Given a continuous program and a 

discretization, what will the error bounds be?



Distance-To

Distance from each device to nearest source

Distance in graph is proxy for real distance
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Discretization Error

Prediction:                  



Experimental Strategy

● Distribute n devices randomly in area A, 
communicating in r range, for density ρ

● Perfect range information, no failures
● Survey wide range of parameters

– 100 trials/combination, ~20K total



Four Domains of Behavior



Four Domains of Behavior



Density affects error monotonically

Density = 6.6 to 209.4



Making an Empirical Model

Standard DeviationMean



Model Fit



Source shape matters
density=10.4 density=83.4



Understanding the Transient



Transient Elimination

Point or “true depth” sources eliminate 
transient



Model Predicts Channel/Bisector



Further Questions

● What is a good model for the initial transient?
● How can the effect of source/medium shape be 

incorporated into the model?
● Can error prediction for gradient-based 

programs be automated?
● What other families of primitives can be 

predicted and composed?
● Can composing primitives ever reduce error?



Agenda

● Predicting Approximation Error
● Dynamic Processes
● Compiling to Bacteria
● Local Checkability

[Beal, in submission]



Dynamically Allocate State

Many processes must create state (e.g. objects, 
processes) in response to their environment

Consider tracking flocks of birds...



Definition of Process

● Let p be an executing 
instance of a program at a 
point m

● p' on m' ∈ N(m) if in the 
same process if p can use 
state from p'

● Specifiable by 5 behaviors: 
creation, growth, sharing, 
computation, termination



Problem of Independent Creation

Are the visible birds part of the same flock?



UIDs can't distinguish processes

Theorem: if instances of processes form an 
equivalence class ~, no algorithm for creating 
program instances exists that can guarantee safe 
creation in less than O(diameter/c) time
● Proof sketch:

● Time bound → space-like separation possible
● choice of ~ only affected by causally related points
● Algorithm must fail on one of:

– m and m' create P
– m and m' create P'
– m creates P, m' creates P'



Solution: dynamically determined extent

Proposed new proto construct:

    (procs (elt sources)

        ((var init evolve) ...)

      (same? run? &optional terminate?)

      . body)



Example: tracking a flock

flock identity = similarly moving birds
(def close-vec (base other err)
  (< (len (- base other)) (* err (len base))))

(def track-flocks ()
  (procs (bird-vec bird-vecs)
      ((flock-vec
        bird-vec
        (average (filter
                  (lambda (v) (close-vec flock-vec v 0.1))
                  bird-vecs))))
    ((close-vec flock-vec (nbr flock-vec) 0.1)
     (find-if (lambda (v) (close-vec flock-vec v 0.1))
              bird-vecs))
    (measure-shape)))



Implication: self-crossing!

Self-crossing flock Coherent motion processEquivalence class process



Example: reporting on flocks

flocks calculates reporting UID after forming
(report-data-stream (data-set base)
  (procs (data data-set)
    ((uid (1st data) uid)       
     (src true (find uid (map 1st data-set)) diameter))
    ((= uid (nbr uid))        
     (dilate src diameter))
    (channelcast
     src base 2
     (2nd (find uid data-set :key 1st)))))



Example: finding the nearest nest

Processes compete on distance to nest



Further Questions

● What are good primitives for expressing 
dynamic process formation?

● What sorts of dynamic process-based 
algorithms are useful for various tasks?

● How can reportable identity be tracked for a 
process that splits and rejoins its parts?



Agenda

● Predicting Approximation Error
● Dynamic Processes
● Compiling to Bacteria
● Local Checkability

[Beal & Bachrach, '08]



Amorphous Medium

●Continuous space & time
●Infnite number of devices
●See neighbors' past state

Approximate with:
●Discrete colony of cells
●Chemicals transmit state

neighborhood

device



Why spatial computing?

(UT Austin) (v. fscheri Genome Project)

Pointwise Global Diferentiated



Compiling “band-detect”
Proto Weiss bacteria

(def band-detector (signal lo hi)
  (and (> signal lo) 
       (< signal hi)))

(let 
  ((v (diffuse (aTc) 0.8 0.05)))
 (green (band-detect v 0.2 1)))



HLLs & Bacteria

● High-level languages: 
– Shorter programs mean less efcient code
– Optimizing compilers can help

● Bacteria
– Extremely tight resource constraints
– Inherently parallel chemical execution



Synthetic Biology Vision



Spatial Computer
“Can I have this 
network of parts?”

“Here's a set of parts,
1-N, that implement
your network”

D
S



Band detect: behavior
Proto Weiss bacteria



Band detect: code
Proto Weiss bacteria

simpler, more reusable

(def band-detector (signal lo hi)
  (and (> signal lo) 
       (< signal hi)))

(let 
  ((v (diffuse (aTc) 0.8 0.05)))
 (green (band-detect v 0.2 1)))



BioBrick Primitives



In Proto:

(def band-detector (signal lo hi)
  (and (> signal lo) 
       (< signal hi)))

(let 
  ((v (diffuse (aTc) 0.8 0.05)))
 (green (band-detect v 0.2 1)))



● Logical: AND, OR, NOT
● Flow control: IF, MUX
● Arithmetic: +, -, *, /, log, exp, ...
● Relational: >, <, =

Two possible implementations:
● Regulation
● Reaction                          C+DE

Proto to GRNs: First Steps

A B

✓
✓



Digital Arithmetic is Expensive

and

+

● 1 operation

● 5 operations/bit

Use digital for booleans, analog for numbers



Arithmetic

● c: constitutive expression
● (+ A B): same chemical represents both
● (- A B): A+BC

● (log A), (exp A): lookup tables 
– approximate w. summary of > tests?

● (* A B), (/ A B): log add, subtract

Range? How many bits?



Relational: AD conversion

● A+BC

– (< A B)

– (> A B)

– (= A B)

– (!= A B)

A outB

A outB

A outB

A outB



Naïve Implementation



Resources Required

Resource Hand Tuned Naive

Signal-carrying chemical 3 11

Protein coding sequence 6 14

Promoters 5 14

Intercellular messengers 2 2

Chemical reactions 0 2



Optimize: Constant Elimination



Optimize: Algebraic Simp. (1/2)



Optimize: Algebraic Simp. (2/2)



Optimize: Dead Code Elimination



Optimize: Copy Propagation



Optimize: Use-Defnition Analysis



Resources Required

Resource Hand Tuned Naive Optimized

Signal-carrying chemical 3 11 3

Protein coding sequence 6 14 6

Promoters 5 14 5

Intercellular messengers 2 2 2

Chemical reactions 0 2 0



Further Questions

● How many bits precision can be supported?
● What are good biological implementations of 

other operations?
● Are there useful bio-specific optimizations?
● How can timing be managed?
● Will it work?



Agenda

● Predicting Approximation Error
● Dynamic Processes
● Compiling to Bacteria
● Local Checkability

[Yamins, '08]



Model

Motivation: morphogenesis & high cost of state
● Crystalline network of asynchronous FSMs
● Boundary & directions are distinguishable
● r-hop neighborhood

n devices ⋅  S states → set C
n,S

 of configurations

2 01 1 01 2

r = 1



Local Checkability

Let T be a pattern.  A binary function Θ: N
r
 → {T,F} 

over neighborhoods of radius r is a Local Check 
Scheme (LCS) for T if:

● For all X in C
S
, Θ(X) = 1 → X ∈ T

● For all n, such that T ∩ C
n,S
≠∅, there is X ∈ 

C
n,S

 such that Θ(X)=1

The Local Check Radius of T is minimum r for 
which an LCS exists.  LCR(T) = ∞ → not locally 
checkable



Self-stabilization → Local Checkability

Theorem: If F is a self-stabilizing algorithm that 
makes T using r neighborhoods, then r >= LCR(T)

Corollary: For all repeat patterns T
q
,                      

       LCR(T
q
)<=|q|/2

Intuition: if you can't locally check, the algorithm 
can't know if it's finished.



Local Checkability → Self-Stabilization

Proof by construction:
● For “Single-choice” patterns:

● Given LCR(T) = r, choose a neighborhood of 2r
● If left neighbors are correct, set self to match
● Otherwise, do nothing

● All others use a self-organizing turing machine 
that adds transient “marker” states to make the 
pattern “single choice.”



Example of “Single-Choice” Pattern 

Repeat Pattern: LCR <= 2

Rules: ? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

else do nothing

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ?



Example of Self-Organizing Turing Machine

● Pattern: T
100

T
1000

● 10 rules, 3 extra states
● Example of execution:



2D Pattern Primitives

● Repeat patterns
● Proportionate patterns
● Fractal-generatable curves



Further Questions

● Are there other useful basis patterns?
● Can these results be extended to irregular 

spaces or amorphous networks?
● What bounds are there for logarithmic state?
● What is an appropriate language for expressing 

the family of locally checkable patterns?



What have we learned?

● Amorphous Medium abstraction simplifies 
programming of space-filling networks

● Appropriate space and time operations make it 
easy to compile global descriptions into local 
actions that approximate the global

● Geometric metaphors allow complex behaviors 
to be programmed with very short programs.

● Self-healing programs adjust to changes, and 
behave predictably when composed together.

● Spatial computing is filled with open questions 
and new frontiers for research.



Lecture 1: Spatial Computers & Fields



Lecture 2: Continuous Space-Time Programs

Pointwise Restriction

Feedback Neighborhood

+ restrict

+

741

delay

48

any-hoodnbr



150 devices 2000 devices

Lecture 3: Discrete Approximation & Self-Healing



Lecture 4: Moving Devices

found a 
victim!

rescue 
on the 
way!

Robot motion = vector felds



Lecture 5: Current Frontiers
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