Engineering Complex Behaviors in Biological Organisms

Jacob Beal

University of Iowa December, 2015

Vision: WYSIWYG Organism Engineering^{BBN Technologies}

Bioengineering should be like document preparation:

Focus: Genetic Circuits

No Arabinose

High Dose Arabinose

Raytheon

Example genetic circuit applications

Fermentation control

CAR T-cell Therapy

Raytheon

High-Level Genetic Circuit Design

Raytheon

- 1975
 1980
 1985
 1990
 1995
 2000
 2005
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 200

 Year

 [Purnick & Weiss, '09]

 Deducation of research impact
- Reduction of barriers to entry

*Sampling of systems in publications with experimental circuits

- Breaking the complexity barrier:
- Why is this important?

Organism Level Description

This gap is too big to cross with a single method!

[Beal et al, ACS Syn. Bio. 2012]

A Tool-Chain Example

(def simple-sensor-actuator ()
 (let ((x (test-sensor)))
 (debug x)

A high-level program of a system that reacts depending on sensor

output

(debug-2 (not x))))

Mammalian Target

E. coli Target

Mammalian Target

E. coli Target

Raytheon BBN Technologies

Mammalian Target

E. coli Target

[Beal et al, ACS Syn. Bio. 2012]

Mammalian Target

E. coli Target

A Tool-Chain Example

Automated assembly step selection for two different platform-

specific assembly protocols

Raytheon BBN Technologies

Resulting cells demonstrating expected behavior

Uninduced

Induced

Mammalian Target

Uninduced

Induced

E. coli Target

SB Synthetic Biology Open Language BIN Technologies

Lots of different synthetic biology resources...

High-Level Design: BioCompiler

Compilation & Optimization

Other tools aiming at high-level design: Cello, Eugene, GEC, GenoCAD, etc.

[Beal, Lu, Weiss, 2011]

- High-level primitives map to GRN design motifs
 - e.g. logical operators:

```
(primitive not (boolean) boolean
  :grn-motif ((P high R- arg0 value T)))
```


- High-level primitives map to GRN design motifs
 - e.g. logical operators, actuators:

- High-level primitives map to GRN design motifs
 - e.g. logical operators, actuators, **sensors**:

• Functional program gives dataflow computation:

• Operators translated to motifs:

Design Optimization

(green (one-bit-memory (aTc) (IPTG)))

Unoptimized: 15 functional units, 13 transcription factors

Design Optimization

4 transcription factors

Unoptimized: 15 functional units, 13 transcription factors

Complex Example: 4-bit Counter

The Tool-Chain Approach:

- Barrier: Characterization of Devices

 Emerging solution: TASBE characterization method
- Barrier: Predictability of Biological Circuits
 Emerging solution: EQuIP prediction method
- Barrier: Availability of High-Gain Devices
 - Emerging Solution: combinatorial device libraries based on CRISPR, TALs, miRNAs, recombinases, …

Characterization & reproducibility

iGEM Interlab Study: Build three constitutive GFP constructs Culture & measure fluorescence 3 biological replicates (Extra: x 3 technical rep.)

Ravtheon

BBN Technologies

Image from iGEM Oxford 2015

Raytheon 2015 iGEM Interlab Study Participation **BBN Technologies**

Paris-Saclay

TecCEM

Pasteur

Aalto-Helsinki Birkbeck CU Boulder Glasgow London Biohackspace NJAU_China Rock Ridge Virginia Aix-Marseille BIT Czech_Republic Harvard_BioDesign LZU Northeastern SCUT Boston University Hong_Kong-CUHK NRP-UEA Amoy Duke Marburg SDU-Denmark Brasil-USP HUST-China ANU-Canberra Edinburgh METU_Turkey NTNU-Trondheim SPSingapore ATOMS-Turkiye Cairo_Egypt EPF_Lausanne HZAU-China Minnesota NU_Kazakhstan Stanford-Brown Austin_UTexas Carnegie Mellon ETH Zurich IISER_Pune MIT OUC-China Stockholm CitvU HK Exeter University KU Leuven Nanjing_NFLS Oxford SYSU-Software BHSF_Beijing

Nankai

NEAU-China

Leicester

Lethbridge

Cork

BIOSINT Mexico CSU_Fort_Collins Gifu

Bielefeld

Freiburg

TecCEM HS Tec_Monterrey Tokyo Tech Toronto Trento TrinityCollegeDublin TU Delft SZMS_15_Shenzhen TU Eindhoven Tuebingen

Tufts

UCL

UCLA

UC San Diego

UFMG_Brazil

UMaryland

Vanderbilt

Utah State

Vilnius-Lithuania

Waterloo William and Mary WLC-Milwaukee WPI-Worcester

High precision possible

Raytheon BBN Technologies

Strain

Instrument

Calibrated Flow Cytometry

Convert FITC a.u. to MEFL

[Roederer, 2002; Wang et al., 2008; NIST/ISAC, 2012; Beal et al., 2012; Kiani et al., 2014; Beal et al., 2014; Davidsohn et al, 2014]

Precision dose-response measurement allows highprecision prediction with quantitative models

Prediction of Repressor Cascade

Range vs. Error for 6 Cascades

Cascade

[Davidsohn et al., 2014]

Kavrneon

How much does calibration matter?

[Davidsohn et al., submitted]

Raytheon

Per-cell measurement of dose-response gives model allowing high-precision control of expression

Example:

Prediction of fluorescence vs. time for novel mixtures of 3 Sindbis RNA replicons

Example Prediction of 3-RNA Replicon

Mix 1: 0.1Y, 0.1R, 0.1B Mix 2: 0.3Y, 0.3R, 0.3B Mix 3: 0.1Y, 0.5R, 0.4B Mix 4: 0.2Y, 0.2R, 0.6B Mix 5: 0.01Y, 0.1R, 0.5B Mix 6: 0.4Y, 0.02R, 0.02B

Kavrneon

High-performance device libraries

TetR Homologs

- Variable on/off
- Variable amplification
 →ΔSNR ~0

Kavtheon

BBN Technologies

Best Possible ΔSNR:

- Only 4 devices can have SNR>0
- Few good input/output matches

Transfer Curves:

Integrase Logic

- ~1000x on/off, good amplification
- ~1-5% non-responsive

 $\rightarrow \Delta SNR < 0$

TALE Repressors

~1000x on/off, poor amplification

 $\rightarrow \Delta SNR < 0$

CRISPR Repressors

- ~100x on/off, amplification ???
- $\rightarrow \Delta SNR$ unknown

[Garg et al., 2012; Davidsohn et al., 2015; Li et al., 2015]

[Kiani et al. 2014; Kiani et al. 2015]

- Automation-assisted workflows can yield dramatic improvements in organism engineering
- Biological circuits can be "compiled" from highlevel specifications of behavior
- New biological devices, measurement, and modeling are starting to enable complex designs

Acknowledgements:

Raytheon BBN Technologies

Aaron Adler Joseph Loyall Rick Schantz Fusun Yaman

NIST

Marc Salit

Sarah Munro

Ron Weiss Jonathan Babb Noah Davidsohn Mohammad Ebrahimkhani Samira Kiani Tasuku Kitada Yinqing Li Ting Lu

Plii

Zhen Xie

Douglas Densmore Evan Appleton Swapnil Bhatia Chenkai Liu Viktor Vasilev Tyler Wagner

Traci Haddock Kim de Mora Meagan Lizarazo Randy Rettberg

Markus Gershater

Agilent Technologies Jim Hollenhorst

