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Syllabus

o Pervasive Computing, Spatial Computing

— Example Scenarios
o Overview of Spatial Approaches
o Three spatial programming models:

— Spatial Programming / Smart Messages
— TOTA / Field-based Coordination
— Proto / Amorphous Medium abstraction
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Wireless-enabled embedded
systems

>3.3B cell phones vs. 600M Internet-connected PC’s
in 2007

— >600M cell phones with Internet capability, rising rapidly

New cars come equipped with navigation systems
and will soon have wireless interfaces (WiFi/DSRC,
cellular, WiMax)

Sensor deployment just starting, but some estimates
~5-10B units by 2015

Military/emergency response wireless robots,
unmanned vehicles, unmanned aircraft
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Meet Britain's next prime minister

Will Africa ever get it right?

| ECONOMiSt | npaiasvas o Computing,

~ Theworld's biggest banking battle

When everything connects ) _
B A I e T sensing anytime, anyw here

o Wireless embedded
systems cooperate to

achieve global tasks
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Example: intrusion detection

Left Hill il _ @ Motion Sensor

é Mobile robot
with camera

o Intrusion detection across hills using motion
sensors and autonomous robots with cameras

« Number and location of systems are unknown
o Configuration is not stable over time

— Intrusions can appear randomly
— Robots can move



Example: museum guide

| would like to see
the Mona Lisa,
avoiding the
queues...

I've gotten lost!
How can | rejoin
my friends?
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Not Very Close to This Vision Yet

e Nomadic computing
- Devices: laptops
— Internet: intermittent connectivity
— Work: typical desktop applications

e Mobile communication
- Devices: PDAs, mobile phones, Blackberries
— Internet: continuous connectivity
- Work: read emaill, potentially web
e Experimental sensor networks
- Devices: Berkeley/Crossbow motes

— Internet: Possible through base station
— Work: Monitor environment, wildlife
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* Hard to program distributed applications over
collections of wireless systems

— Systems: distributed across physical space,
mobile, heterogeneous hardware and software,
resource-constrained (battery, bandwidth,

memory)
1 T1INJI] y,

— Networks: large scale volatile (ad hoc topologies,
dynamic resources), less secure than wired
networks



Traditional distributed computing
does not work well outdoors

« End-to-end data transfers may rarely
complete

o Fixed address naming and routing (e.g., IP) are
too rigid

o Difficult to deploy new applications in existing
networks

Outdoor distributed computing requires novel programming
models and system architectures!
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Spatial computers

Robot Swarms
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More formally...

o A spatial computer is a collection of
computational devices distributed through a
physical space in which:

— the difficulty of moving information between any
two devices is strongly dependent on the distance

nnnnnnnnn

— the “functional goals” of the system are generally
defined in terms of the system's spatial structure



More formally...

o A spatial computer is a collection of
computational devices distributed through a
physical space in which:

— the difficulty of moving information between any
two devices is strongly dependent on the distance

nnnnnnnnn

— the “functional goals” of the system are generally
defined in terms of the system's spatial structure

Notice the ambiguities in the definition



Promising Solution:
Spatial Computing Approaches
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Desiderata for spatial computing
approaches

o Take advantage of spatial nature of problems
o Simple, easy to understand code

o Scalable to potentially vast numbers of
devices

o Robust to errors, adapt to changing
environment
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o Pervasive Computing, Spatial Computing

— Example Scenarios
o Overview of Spatial Approaches

o Three spatial programming models:

— Spatial Programming / Smart Messages
— TOTA / Field-based Coordination
— Proto / Amorphous Medium abstraction



)
b
e
O
g
O

rl

Q
Q.
(O

O
>

O
-
O

’

(O
)

)

®)
®
N
o
2
&
(@]
@)

-
@

-

£

Non-Spatial

Viral

&

&
(q0]
c

O

Spatial
B’I
Uniform

N\
| -
ed

L
&
o

@
O

23



)
b
e
O
g
O

rl

Q
Q.
(O

O
>

O
-
O

’

(O
)

Spatial

Non

Spatial

24



Approaches from local dynamics

* Primitives describe only actions between
devices and the neighbors they communicate
with.

« Advantages: coherent and correct semantics

o Disadvantages: programmer must figure out
how to marshal local dynamics to produce
coherent large-area programs



Pointwise

Restriction

restrict |

i

Neighborhood

Feedback
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tuple

Middleware to create distributed data
structures like gradients and fields.

Data structures made of tuples injected from
a node and virally spread across the network.

T=(C,P,M)

API to inject/read tuples
API to define (C,P,M)

Gradient

C = value;

P = propagate breadth-first
increasing value by 1 at every hop;
M = maintain gradient despite
network reconfiguration;



Other viral approaches

o Smart Messages (Borcea)

— Execution migration to nodes of interest
— Nodes of interest discovered using self-routing

o Paintable Computing (Butera)

— Consistent transfer, view of neighbor data
— Code for install, uninstall, transfer control and update

e RGLL (Sutherland)

— Code for arrival, tick, collision, departure
— Communication via collision



Approaches from geometry

* Primitives describe large-scale geometric
regions (e.g. “all devices on the left hill”)

o Advantages: coherent, easy to specify large-
scale programs

o Disadvantages: generally easy to accidentally
specify programs that cannot be executed

correctly



Regiment

Provide a rich set of operators to work with data
distributed over time and space.

Simple Regions, created from geometric or radio
relationships:

e K-hop-neighborhood

* K-nearest nodes

* All nodes within circle (square, etc.)

Derived Regions, built from other regions
* Union, Intersection
* Map, Filter



Spatial programming

{Right_Hill:robot[0]}
Left Hil Right Hill

{Right_Hill:robot[1]}

{Right_Hill:motion[O]}

m Virtual name spae over utdor networks of
embedded systems

— Systems named by spatial references using their locations and
properties

— Applications are sequential programs that read/write spatial
references (similar to regular variables)

— Read/write trigger transparent program migrations on each
referenced system 31



Other geometric approaches

o EgoSpaces

o SpatialViews

o Spidey

o Abstract Regions



Non-composable approaches

* Algorithms and techniques, generally based
on geometry, but not part of a system of
composable parts

o Advantages: powerful spatial ideas for that
are good for inclusion in code libraries

o Disadvantages: developed as stand-alone
ideas, and may have limited composability
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e Contextual information is expressed by means of
distributed data-structures (i.e. fields) spread by
agents.

* Agent move and act being driven by these fields
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Self-healing gradients




Other non-composable approaches

o Yamins' locally checkable patterns
— Family of self-stabilizing CA patterns
o hood (Whitehouse, et. al.)
- nesC library for interacting with neighbors

o McLurkin's “Stupid Robot Tricks”

- Swarm behaviors intended mainly for time-wise
multiplexing.

o Countless one-shot systemes...



Significant non-spatial approaches

« “roll-your-own” (e.g. C/C++)
o TinyDB
— Distributed database queries for sensor networks

o Kairos
— Distributed graph algorithms

o WaveScript
— Distributed streaming language
— Follow-on to Regiment w/o the spatial primitives
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Outdoor programming example

Left Hill Right Hill

& Motion Sensor

Mobile robot
with camera

m Intrusion detection across the hills using motion sensors
and autonomous mobile robots with cameras

m Number and location of systems are unknown
m Configuration is not stable over time

— Intrusions can appear randomly
— Robots can move

39



Traditional (indoor) programming

Program Variable access

l

Virtual Address Space ‘ ‘

Page Table + OS —

Physical Memory

Programs access data through variables

Variables mapped to physical memory locations
Page Table and OS guarantee reference consistency
Access time has an (acceptable) upper bound ;



Software distributed shared memory

Distributed Application Variable accesses

Shared virtual 1
address space ‘

Page Table +
Message Passing

Distributed
Physical Memory

» Applications access distributed data through
shared variables

* Runtime system translates variable accesses into
message passing (when necessary)

41



From indoor to outdoor computing

Virtual Address Space

Space Region

Variables

Spatial References

Variables mapped to
physical memory

Spatial references mapped
to systems embedded in

+he nhvcical ecnace
CI I\ '.IIIYJIUUI JPU\-«\.—

Reference consistency

?

Bounded access time




Spatial Programming (SP) at a glance

Provides a virtual name space over outdoor networks
of embedded systems

Embedded systems named by their locations and
properties

Runtime system takes care of name resolution,
reference consistency, and networking aspects

Implementation on top of Smart Messages: SP
applications execute, sequentially, on each system
referenced in their code



Space regions

Hill = new Space({lat, long}, radius);

o Ey

m Virtual representation of a physical space

m Similar to a virtual address space in a conventional
computer system

m Defined statically or dynamically

44



Spatial references

—-—

A {Hill:robot[0]}

7 .
/ Hill N
/

m Defined as {space:property} pairs

m Virtual names for embedded systems

m Similar to variables in conventional programming

m Indexes used to distinguish among similar systems
In the same space region

45



Relative space regions

{Left_Hill:robot[0]}

-’ e
Ve NS \\ e . _
/. LefrHill /N Right Hill

e b SN RS e

\
{rangeOf({Left Hill:robot[0]}, radius):robot[0]}

46



From indoor to outdoor computing

Virtual Address Space

Space Region

Variables

Spatial References

Variables mapped to
physical memory

Spatial references mapped
to systems embedded in
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Reference consistency

At first access, a spatial reference is mapped to an
embedded system located in the specified space

* Mappings maintained in per-application Mapping Table
(MT) — similar to a page table

{space, property, index} — {unique_address, location}

« Subsequent accesses to the same spatial reference

will reach the same system (using MT) as long as it is
located in the same space region



Reference consistency example

{1
\!)

- .y -— .y
//’ N\ - N\
N

7
;7 Left Hill \ ,7 Right Hill s

{Left_Hill:robot[0]}.move = ON;

49



Reference consistency example

(D)
\<)

’——\ f——\
// \\ - ~

7
;7 Left Hill \ ,7 Right Hill s

{Left_Hill:robot[0]}.move = OFF;

50



Space casting (1)

51



Space casting (2)

- = - P -‘\
s N s N

I’/Left Hill *\ /Right Hill_ N

{Right_Hill:(Left_Hill:robot[0])}



From indoor to outdoor computing

Virtual Address Space

Space Region

Variables

Spatial References

Variables mapped to
physical memory

Spatial references mapped
to systems embedded in

+he nhvcical ecnace
CI I\ '.IIIYJIUUI JPU\-«\.—

Reference consistency

Mapping Table

Bounded access time

?




Bounding the access time

* How to bound the time to access a spatial
reference?
— Systems may move, go out of space, or disappear

* Solution: associate an explicit timeout with
each spatial reference access

try{
{Hill:robot[0], timeout}.move = ON;

Jcatch(TimeoutException e){
/l the programmer decides the next action

)




Spatial programming example

. - Find the sensor

Left Hill Right Hill that detected
g the “strongest”

motion on Left Hill

- Turn on a camera

In the proximity

of this sensor

for(i=0; i<1000; i++)
try{
if ({Left_Hill:motionli], timeout}.detect > Max_motion)
Max_motion = {Left _Hill:motion[i], timeout}.detect;
Max_id =1;
Jcatch(TimeoutException e)
break;
IntrusionSpace = rangeOf({Left_Hill:motion[Max _id].location}, Range);
{intrusionSpace:robot[0]}.camera = ON;
{intrusionSpace:robot[0]}.focus = {Left Hill:motion[Max_id].location}; 55




Spatial Programming implemented on
top of Smart Messages

 Next

— Overview of Smart Messages

— Few implementation details



"‘Dumb” messages vs. “smart”
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Smart Messages at a glance

User-defined distributed applications

Composed of code bricks, data bricks, and
execution control state

Execute on nodes of interest named by properties
Migrate between nodes of interest

Self-route at every node in the path during
migrations



Cooperative node architecture

SM Ready
Queue
- SM B Admission Virtual
Manager Machine

Code
Cache

Tag
Space




SM execution at a node

Takes place over a virtual machine
Non-preemptive, but time bounded
Ends with a migration, or terminates

During execution, SMs can

— Spawn new SMs

— Create smaller SMs out of their code and data bricks
— Access the tag space

— Block on a tag to be updated (update-based
synchronization)



Tag space

Collection of application tags and I/O tags
— Essentially, tags are (name, value) pairs

Application tags: persistent memory across SM
executions

/O tags: access to operating system and 1/O
subsystem

Tags used for

— Content-based naming  migrate(tag)

— Inter-SM communication write(tag, data), read(tag)
— Synchronization block(tag, timeout)

— /O access read(temperature)

61



Protection domains for tag space

Owner
Origin\'
Code Others

Owner: SM that creates the tag

Family: all SMs having a common ancestor with the
SM that owns the tag

Origin: all SMs created on the same node as the
family originator of the tag owner

Code: all SMs carrying a specific code brick
Others: all the other SMs

62



Access control example
(code-based protection domain)

SM3
SM1 SM1 SM1 c3|ca
Cl|Cr — EEEE—
Code \ v
Bricks SM2 SM2 /
C2 |Cr r—b> pr— I
sz e
Owner = SM1
[Hash(Cr), RW]
Cr = Same routing used by SM1 and SM?2

Access permission granted for SM2
Access permission denied for SM3



SM admission

Ensures progress for all SMs in the network

Prevents SMs from migrating to nodes that cannot
provide enough resources

SMs specify lower bounds for resource
requirements (e.g., memory, bandwidth)

SMs accepted if the node can satisfy these
requirements

More resources can be granted according to
admission policy
— If not granted, SMs are allowed to migrate

64



Application example

heed
& 2 taxis

n=0
while (n<NumTaxis)
migrate(Taxi);
If (readTag(Available))
writeTag(Available, false);

writeTag(Location, myLocation);
n++:

data brick

application
code brick

routing
code brick

65



SM migration

migrate(Taxi)

- - N . . ..
——'_— -———
—-— [

Taxi 7 N Taxi
2 .
= g = . 2a e

sys_migrate(2

== sys_migrate(3) m_f% sys_migrate(4)

1 4

m migrate()
- migrates application to next node of interest
- hames nodes by tags
- implements routing algorithm
m sys_migrate()
- one hop migration
- used by migrate to implement routing

66



Routing example

RouteToTaxi = 2

2 i
& &

RouteToTaxi = ? Taxi

migrate(Taxi}{

else
create_SM(DiscoverySM, Taxi);
createTag(RouteToTaxi, lifetime, null);
block_SM(RouteToTaxi, timeout);

67



Routing example

RouteToTaxi = 2

RouteToTaxi = j

migrate(Taxi){
while(readTag(Taxi) == null)
If (readTag(RouteToTaxi))
sys migrate(readTag(RouteToTaxi));

68



Routing example
2

RouteToTaxi = 2

RouteToTaxi = j

migrate(Taxi}{

else
create_SM(DiscoverySM, Taxi);
createTag(RouteToTaxi, lifetime, null);
block_SM(RouteToTaxi, timeout);

69



SM self-routing
« SMs carry the routing and execute it at each node
* Routing information stored in tag space

« SMs control their routing
— Select routing algorithm (migrate primitive)
* Multiple library implementations
* Implement a new one
— Change routing algorithm during execution in response to
» Adverse network conditions

« Application’s requirements

70



Spatial programming using Smart
Messages

« SP application translates into an SM

— Spatial reference access translates into an SM
migration to the mapped node

— Embedded system properties: Tags

« SM self-routes using geographical routing and
content-based routing

« Reference consistency

— Unique addresses (stored in mapping table) are
unique tags created at nodes

— SM carries the mapping table



SP to SM translation: example

Spatial Reference
Access

|

Smart Message <

Left Hill

Right Hill

Max_motion = {Left_Hill:motion[1], timeout}.detect;

/Mapping
Table

Code
Brick

{Left Hill motion,1} —>{yU78GH5,location}

ret = migrate_geo(location, timeout);
If (ret == LocationUnreachable)
ret = migrate_tag(yU78GHDb5, timeout);
If ((ret == OK) && (location == Left_Hill))
return readTag(detect);
else throw TimeoutException 72




Prototype implementation

« SM implemented over modified version of Sun’s
Java K Virtual Machine

— Small memory footprint (160KB)

« SM and tag space primitives implemented inside
virtual machine as native methods (efficiency)

« /O tags: GPS location, neighbor discovery, image
capture, light sensor, system status

Ad hoc networks of
HP iPAQ PDAs running Linux

73



Lightweight migration

 Traditional process migration difficult
— Strong coupling between execution entity and host
— Needs to take care of operating system state (e.g.,

open sockets, file descriptors)

* Tag space decouples the SM execution state
from the operating system state

« SM migration transfers only
— Data bricks explicitly specified by programmer

— Minimal execution control state required to resume
the SM at the next instruction (e.g., instruction
pointer, operand stack pointer)



Summary

« Spatial Programming makes outdoor
distributed computing simple

— Volatility, mobility, configuration dynamics, ad hoc
networking are hidden from programmer

* Implementation on top of Smart Messages
— Easy to deploy new applications in the network

— Quick adaptation to highly dynamic network
configurations

* Acknowledgments: Liviu Iftode, Porlin Kang
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Museum case study application

| would like
to see the
Monna Lisa,
avoiding the
queues...

I've got lost! How
can | rejoin my
friends?

77



The meeting task

* A Group a tourist want to meet somewhere within the
building.

 The “classic” solution — general context information
— Involve rather complex algorithms to decide what to do

— If something changes (e.g. a corridor is closed) the solution
has to be recomputed

e Our proposal

— EXxpress context by means of a “red carpet” leading to the
meeting room.

— How to represent the “red carpet”?

78
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« Contextual information is expressed by means of distributed data-

structures spread in the environment (i.e. fields). Agent move and act
being driven by these fields

« Agents’ combine perceived fields in a, so called, coordination field that
encodes their actual application task. Then, they act being driven by the
resulting values and gradient.

« The coordination policy is encoded into fields’ waveform, in the way in which
?gents combine perceived fields and in the way in which they react to the
ields.

Agent actions change fields

—

Fields drive agent actions
79



Field genera
tourist

Coordination Field obtained by
taking the field with the
greatest magnitude — farther
agent



Designing the application becomes trivial. Just compute the coordination
field and move following the gradient downbhill.

dt oX .

J

dx, _+V.acoordi(X1,Xz,..-,Xn,t)

The solution is adaptive. If a tourist gets trapped somewhere, then the
meeting room automatically get closer to the unlucky tourist.

Supposing that fields distributed data structures are maintained coherent
despite environment dynamism, then the application is robust to closed
corridors, etc.
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The TOTA middleware

 Distributed tuples injected and spread In
the network implementing the concept
of fields.

T=(C,P,M)

Application

EVENT INTERFACE TOTAAPI

TOTA ENGINE
STORED
TUPLES
A

A 4
Operating System A

Network / \




The TOTA scenario

T= C = (value = “2”, color = “green”)
P = (propagate to all nodes,

decrease “value” for the first 2 hops then
increase it, change color at every hop)
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The TOTA scenario

T= C = (value = “2”, color = “green”)
P = (propagate to all nodes,
decrease “value” for the first 2 hops then
increase it, change color at every hop)

92



TOTA main algorithm

* Propagation is easy

— Breadth-first, avoiding backward propagation
* Maintenance is difficult

— We do not want to periodically re-propagate

— We wish maintenance is localized near the
point where the network changes



Self-Maintenance

- [

EXAMPLE 1

Given a Hop tuple X, we will call another tuple Y a supporting tuple of X if:
1. Y belongs to the same distributed tuple as X

2. Yisone-hop distant from X
3. thevalue of Y is equal to the value of X minus one

X is in a safe-state if it has at least a supporting tuple

2 is in a safe-state,
since it is supported by 1

.
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Coding the meeting example 1/4

public class MeetAgent extends AbstractAgent {

private static final int speed = 30;
private Peerlnterface ApplicationSide peer;
private TotaMiddleware tota;

public MeetAgent(Peerinterface ApplicationSide peer) {
this.peer = peer;
tota = new TotaMiddleware(peer);

}



Coding the meeting example 2/4

public void step(int time) {
tota.step(time);
/l inject the meeting tuple
if(time == 0) {
TotaTuple t = new GradientTuple();
t.setContent("<content=meet>");
tota.inject(t);

}

if(time > 0) {

int[] dir = getDirection();
if(dir != null)
move(dir[0],dir[1]);

}



Coding the meeting example 3/4

private int[] getDirection() {

GradientTuple mt = new GradientTuple();
mt.setContent("<content=meet>");

Vector local = tota.read(mt);

int maxi = 0;
GradientTuple maxt = (GradientTuple)local.get(0);
for(int i=1; i<local.size(); i++) {

GradientTuple t = (GradientTuple)local.get(i);
if(maxt.hop < t.hop)

maxt = t;

}



Coding the meeting example 4/4

GradientTuple tofollow = null;
Vector remote = tota.readOneHop(mt);
for(int i=0; i<remote.size(); i++) {
GradientTuple t = (GradientTuple)remote.get(i);
if(t.id.equals(maxt.id) && t.hop < maxt.hop) {
if(tofollow==null || (tofollow.hop > t.hop))
tofollow = t;

}
}

return getDirection(tofollow.from);
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Summary

Field-based data structures are useful to
represent context:

—in a wide range of scenarios
— so that it is easily usable by services

TOTA tuples are robust to dynamic spatial
computer and can be easily programmed

Download and play with TOTA

— http://polaris.ing.unimo.it/tota/download.html
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o Pervasive Computing, Spatial Computing

— Example Scenarios
o Overview of Spatial Approaches

o Three spatial programming models:

— Spatial Programming / Smart Messages
— TOTA / Field-based Coordination
— Proto / Amorphous Medium abstraction
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Geometric program: channel

(cf. Butera)
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Geometric program: channel
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Geometric program: channel
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Geometric program: channel
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Geometric program: channel
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Geometric program: channel
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o Simplicity
o Scaling & Portability
o Robustness

(we'll come back to this in a bit...)



Amorphous medium

neighborhood

.Continuous space & time Approximate with:
.Infinite number of devices «Discrete network of devices
«See neighbors' past state «Signals transmit state
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Computing with fields

source destination width
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Diving into the details

Let's build this up using the Proto simulator,
*one piece at a time...

*(break to work w. simulator)



Proto

(def gradient (src) ...) G)
(def distance (src dst) ...) — 6
(def dilate (src n) luati . o
(<= (gradient src) n)) w Q)
(def channel (src dst width) —
(let* ((d (distance src dst))
(trail (<= (+ (gradient src)
(gradient dst)) global to local ‘ —
d))) compilation @)
(dilate trail width))) () ®)
platform ‘ dpvice Q)
specificity & i -
optimization neighborhood -
discrete N
approximation O
o
Device —
Kernel @

[E=Y
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Pointwise

Restriction

restrict |

i

Neighborhood

Feedback
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Modulation by restriction

source

destination

10

channel

coord

| gradcast

5




In simulation...
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o Simplicity
o Scaling & Portability
o Robustness

2000 devices 150 devices
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Left Hill Right Hill

Mobile robot
with camera

e Use channel to stream intruder information
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Example: museum traffic control




Weaknesses

Functional programming scares people
Programmers can break the abstraction
No dynamic allocation of processes

No formal proofs available for quality of
approximation in a composed program

(active research on last two)



Summary

o Amorphous Medium abstraction simplifies
programming of space-filling networks

o Proto has four families of space and time
operations, compiles global descriptions into
local actions that approximate the global

o Geometric metaphors allow complex spatial
computing problems to be solved with very
short programs.



Conclusions

New and exciting research area!

Many pervasive computing scenarios reflect spatial
computers concepts

Many research approaches exist to programming
pervasive application for spatial computing
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— More software engineering

— More real-world applications

— Better definition and management of “emergent” behaviors and
properties
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Thanks for your attention!



