
  

Spatial Computing for Swarms

Jacob Beal
September, 2009



Agenda

● Spatial Computing
● Survey of Existing Approaches
● Proto & Amorphous Medium



From one robot, to many



From one robot, to many



From one robot, to many

Robotic density is currently very low, but...



Networked devices are 
filling our environment...



Networked devices are 
filling our environment...



Networked devices are 
filling our environment...

How do we program aggregates robustly?



Spatial Computers

Robot Swarms Biological Computing

Modular RoboticsReconfigurable Computing

Sensor Networks

Cells during Morphogenesis



More formally...

● A spatial computer is a collection of 
computational devices distributed through a 
physical space in which:
● the difficulty of moving information between any two 

devices is strongly dependent on the distance 
between them, and

● the “functional goals” of the system are generally 
defined in terms of the system's spatial structure



More formally...

● A spatial computer is a collection of 
computational devices distributed through a 
physical space in which:
● the difficulty of moving information between any two 

devices is strongly dependent on the distance 
between them, and

● the “functional goals” of the system are generally 
defined in terms of the system's spatial structure

Notice the ambiguities in the definition



(w. Dan Yamins)

Graphs

Crystalline
(e.g. CAs)

Amorphous/
Continuous



(w. Dan Yamins)

Graphs

Crystalline
(e.g. CAs)

Amorphous/
Continuous

de
ns

ity

sp
ac

e 
co

m
pl

e
xi

ty
jitter

grain size



(w. Dan Yamins)

Graphs

Crystalline
(e.g. CAs)

Amorphous/
Continuous

de
ns

ity

sp
ac

e 
co

m
pl

e
xi

ty
jitter

grain size

spatial computing



Space/Network Duality

How well does the network cover space?

What space is covered well by the network?



Tentative Mathematical Definition

● A spatial computer is any set of n devices s.t. 
● Graph {V,E} with edge weights w(v

1
,v

2
)

● Manifold M, with distance function d
– M is compact, Riemannian   (may be stronger than needed)

● Position function p: V → M

● w(v
1
,v

2
) = O(1/d(p(v

1
),p(v

2
)))

Examples: unit disc network, chemical diffusion



Example: Target Tracking

Intruder
Guard



Example: Target Tracking

Intruder
Guard



Example: Target Tracking

Intruder
Guard



Example: Search & Rescue

I've found 
a victim!

The rescue 
bots are on 

the way!



How can we program these?

● Desiderata for approaches:
● Simple, easy to understand code
● Robust to errors, adapt to changing environment
● Scalable to potentially vast numbers of devices
● Take advantage of spatial nature of problems



Agenda

● Spatial Computing
● Survey of Existing Approaches
● Proto & Amorphous Medium



A Taxonomy of Approaches

Spatial

DynamicsGeometry

Uniform Viral

Non-Spatial

Non-Composable



A Taxonomy of Approaches

Spatial

DynamicsGeometry

Uniform Viral

Non-Spatial

Non-Composable



Approaches from Local Dynamics

Primitives describe only actions between devices 
and the neighbors they communicate with.

● Advantages: coherent and correct semantics
● Disadvantages: programmer must figure out 

how to marshal local dynamics to produce 
coherent large-area programs



Proto: Computing with Fields

Beal & Bachrach

(def gradient (src) ...)
(def distance (src dst) ...)
(def dilate (src n)
  (<= (gradient src) n))
(def channel (src dst width)
  (let* ((d (distance src dst))
         (trail (<= (+ (gradient src) 
                       (gradient dst)) 
                    d)))
    (dilate trail width)))

neighborhood

device

Device
Kernel

evaluation

global to local
compilation

discrete
approximation

platform
specificity &
optimization



Other Uniform Approaches

● LDP/MELD (CMU Claytronics group)
● Distributed logic programs
● Local resolution leads to long-distance properties



TOTA: Viral tuples



Other Viral Approaches

● Smart Messages (Borcea)
● Execution migrates to nodes of interest, found via 

self-routing code packets

● Paintable Computing (Butera)
● Consistent transfer, view of neighbor data
● Code for install, de-install, transfer-granted, 

transfer-denied, update

● RGLL (Sutherland)
● Code for arrival, tick, collision, departure
● Communication via collision



Approaches from Geometry

Primitives describe large-scale geometric regions 
(e.g. “all devices on the left hill”)

● Advantages: coherent, easy to specify large-
scale programs

● Disadvantages: generally easy to accidentally 
specify programs that cannot be executed 
correctly



MGS

Meristem formation Turing pattern on torus

Michel, Giavitto, Spicher



Regiment

● Streaming collection of data from regions
● Spatial primitives:

– K-hop neighborhood
– K-nearest nodes

● Composition:
– Union/Intersection
– Map/Filter

● Distributed execution as a compiler optimization



Other Geometric Approaches

● Borcea's Spatial Programming
● EgoSpaces
● SpatialViews
● Spidey
● Abstract Regions
● Growing Point Language
● Origami Shape Language



Non-Composable Approaches

Algorithms and techniques, generally based on 
geometry, but not part of a system of 
composable parts 

● Advantages: powerful spatial ideas for that are 
good for inclusion in code libraries

● Disadvantages: developed as stand-alone 
ideas, and may have limited composability



Field-Based Coordination

Mamei & Zambonelli



Self-Healing Gradients



Local Check-Schemes

Yamins



Other Non-Composable Approaches

● hood (Whitehouse, et. al.)
● nesC library for interacting with neighbors

● McLurkin's “Stupid Robot Tricks”
● Swarm behaviors intended mainly for time-wise 

multiplexing.

● Countless one-shot systems...



Significant Non-Spatial Approaches

● “roll-your-own” (e.g. C/C++)
● TinyDB

● Distributed database queries for sensor networks

● Kairos
● Distributed graph algorithms

● WaveScript
● Distributed streaming language
● Follow-on to Regiment w/o the spatial primitives



Summary

● Many approaches exist to programming 
pervasive applications for spatial computers

● Only approaches based on local dynamics 
currently offer predictable composition, correct 
execution, and spatial primitives

● Challenge: obtaining long-range coherent 
behavior from local dynamics



Agenda

● Spatial Computing
● Survey of Existing Approaches
● Proto & Amorphous Medium



Example: Target Tracking

Intruder
Guard



Geometric Program: Channel

Desti-
nationSource

(cf. Butera)



Geometric Program: Channel

(cf. Butera)

Desti-
nationSource



Geometric Program: Channel

(cf. Butera)

Desti-
nationSource



Geometric Program: Channel

(cf. Butera)

Desti-
nationSource



Geometric Program: Channel

(cf. Butera)

Desti-
nationSource



Geometric Program: Channel

(cf. Butera)

Desti-
nationSource



Geometric Program: Channel

(cf. Butera)

Desti-
nationSource



Why use continuous space?

 Simplicity
 Scaling & Portability
 Robustness

(we'll come back to this in a bit...)



Amorphous Medium

Continuous space & time
Infinite number of devices
See neighbors' past state

Approximate with:
Discrete network of devices
Signals transmit state

neighborhood

device



Computing with fields

source destination

gradient distancegradient

<=

+

dilate

width



Computing with fields

source destination

gradient distancegradient

<=

+

dilate

width

37

10



Proto
(def gradient (src) ...)
(def distance (src dst) ...)
(def dilate (src n)
  (<= (gradient src) n))
(def channel (src dst width)
  (let* ((d (distance src dst))
         (trail (<= (+ (gradient src) 
                       (gradient dst)) 
                    d)))
    (dilate trail width)))

neighborhood

device

Device
Kernel

evaluation

global to local
compilation

discrete
approximation

platform
specificity &
optimization

G
lob a

l    Lo cal    D
i scre te



Proto's Families of Primitives
Pointwise Restriction

Feedback Neighborhood

+ restrict

+

741

delay

48

any-hoodnbr



Modulation by Restriction

source destination coord

channel

10

gradcast

10

(5
, 7

)



Why use continuous space?

 Simplicity
 Scaling & Portability
 Robustness

150 devices2000 devices



Diving into the details

Let's build this up using the Proto simulator, 
one piece at a time...

(break to work w. simulator)



In simulation...



Example: Search & Rescue

I've found 
a victim!

The rescue 
bots are on 

the way!



In simulation...



Weaknesses

 Functional programming scares people
 Programmers can break the abstraction
 No dynamic allocation of processes 
 No formal proofs available for quality of 

approximation in a composed program

(active research on last two)



Summary

 Amorphous Medium abstraction simplifies 
programming of space-filling networks

 Proto has four families of space and time 
operations, compiles global descriptions into 
local actions that approximate the global

 Geometric metaphors allow complex spatial 
computing problems to be solved with very 
short programs.



Proto is available

http://stpg.csail.mit.edu/proto.html

(or google “MIT Proto”)

● Includes libraries, compiler, kernel, simulator, 
platforms

● Licensed under GPL (w. libc-type exception)

http://stpg.csail.mit.edu/proto.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

