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Agenda

● Spatial Computing
● Survey of Existing Approaches
● Proto & Amorphous Medium
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From one robot, to many

Robotic density is currently very low, but...
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Networked devices are 
filling our environment...

How do we program aggregates robustly?



Spatial Computers

Robot Swarms Biological Computing

Modular RoboticsReconfigurable Computing

Sensor Networks

Cells during Morphogenesis



More formally...

● A spatial computer is a collection of 
computational devices distributed through a 
physical space in which:
● the difficulty of moving information between any two 

devices is strongly dependent on the distance 
between them, and

● the “functional goals” of the system are generally 
defined in terms of the system's spatial structure
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Notice the ambiguities in the definition
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Space/Network Duality

How well does the network cover space?

What space is covered well by the network?



Tentative Mathematical Definition

● A spatial computer is any set of n devices s.t. 
● Graph {V,E} with edge weights w(v

1
,v

2
)

● Manifold M, with distance function d
– M is compact, Riemannian   (may be stronger than needed)

● Position function p: V → M

● w(v
1
,v

2
) = O(1/d(p(v

1
),p(v

2
)))

Examples: unit disc network, chemical diffusion
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Example: Search & Rescue

I've found 
a victim!

The rescue 
bots are on 

the way!



How can we program these?

● Desiderata for approaches:
● Simple, easy to understand code
● Robust to errors, adapt to changing environment
● Scalable to potentially vast numbers of devices
● Take advantage of spatial nature of problems
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Approaches from Local Dynamics

Primitives describe only actions between devices 
and the neighbors they communicate with.

● Advantages: coherent and correct semantics
● Disadvantages: programmer must figure out 

how to marshal local dynamics to produce 
coherent large-area programs



Proto: Computing with Fields

Beal & Bachrach

(def gradient (src) ...)
(def distance (src dst) ...)
(def dilate (src n)
  (<= (gradient src) n))
(def channel (src dst width)
  (let* ((d (distance src dst))
         (trail (<= (+ (gradient src) 
                       (gradient dst)) 
                    d)))
    (dilate trail width)))

neighborhood

device

Device
Kernel

evaluation

global to local
compilation

discrete
approximation

platform
specificity &
optimization



Other Uniform Approaches

● LDP/MELD (CMU Claytronics group)
● Distributed logic programs
● Local resolution leads to long-distance properties



TOTA: Viral tuples



Other Viral Approaches

● Smart Messages (Borcea)
● Execution migrates to nodes of interest, found via 

self-routing code packets

● Paintable Computing (Butera)
● Consistent transfer, view of neighbor data
● Code for install, de-install, transfer-granted, 

transfer-denied, update

● RGLL (Sutherland)
● Code for arrival, tick, collision, departure
● Communication via collision



Approaches from Geometry

Primitives describe large-scale geometric regions 
(e.g. “all devices on the left hill”)

● Advantages: coherent, easy to specify large-
scale programs

● Disadvantages: generally easy to accidentally 
specify programs that cannot be executed 
correctly



MGS

Meristem formation Turing pattern on torus

Michel, Giavitto, Spicher



Regiment

● Streaming collection of data from regions
● Spatial primitives:

– K-hop neighborhood
– K-nearest nodes

● Composition:
– Union/Intersection
– Map/Filter

● Distributed execution as a compiler optimization



Other Geometric Approaches

● Borcea's Spatial Programming
● EgoSpaces
● SpatialViews
● Spidey
● Abstract Regions
● Growing Point Language
● Origami Shape Language



Non-Composable Approaches

Algorithms and techniques, generally based on 
geometry, but not part of a system of 
composable parts 

● Advantages: powerful spatial ideas for that are 
good for inclusion in code libraries

● Disadvantages: developed as stand-alone 
ideas, and may have limited composability



Field-Based Coordination

Mamei & Zambonelli



Self-Healing Gradients



Local Check-Schemes

Yamins



Other Non-Composable Approaches

● hood (Whitehouse, et. al.)
● nesC library for interacting with neighbors

● McLurkin's “Stupid Robot Tricks”
● Swarm behaviors intended mainly for time-wise 

multiplexing.

● Countless one-shot systems...



Significant Non-Spatial Approaches

● “roll-your-own” (e.g. C/C++)
● TinyDB

● Distributed database queries for sensor networks

● Kairos
● Distributed graph algorithms

● WaveScript
● Distributed streaming language
● Follow-on to Regiment w/o the spatial primitives



Summary

● Many approaches exist to programming 
pervasive applications for spatial computers

● Only approaches based on local dynamics 
currently offer predictable composition, correct 
execution, and spatial primitives

● Challenge: obtaining long-range coherent 
behavior from local dynamics
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Why use continuous space?

 Simplicity
 Scaling & Portability
 Robustness

(we'll come back to this in a bit...)



Amorphous Medium

Continuous space & time
Infinite number of devices
See neighbors' past state

Approximate with:
Discrete network of devices
Signals transmit state

neighborhood

device
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Proto
(def gradient (src) ...)
(def distance (src dst) ...)
(def dilate (src n)
  (<= (gradient src) n))
(def channel (src dst width)
  (let* ((d (distance src dst))
         (trail (<= (+ (gradient src) 
                       (gradient dst)) 
                    d)))
    (dilate trail width)))

neighborhood

device

Device
Kernel

evaluation

global to local
compilation

discrete
approximation

platform
specificity &
optimization
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Proto's Families of Primitives
Pointwise Restriction

Feedback Neighborhood

+ restrict

+

741

delay

48

any-hoodnbr



Modulation by Restriction

source destination coord

channel
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gradcast
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Why use continuous space?

 Simplicity
 Scaling & Portability
 Robustness

150 devices2000 devices



Diving into the details

Let's build this up using the Proto simulator, 
one piece at a time...

(break to work w. simulator)



In simulation...



Example: Search & Rescue

I've found 
a victim!

The rescue 
bots are on 

the way!



In simulation...



Weaknesses

 Functional programming scares people
 Programmers can break the abstraction
 No dynamic allocation of processes 
 No formal proofs available for quality of 

approximation in a composed program

(active research on last two)



Summary

 Amorphous Medium abstraction simplifies 
programming of space-filling networks

 Proto has four families of space and time 
operations, compiles global descriptions into 
local actions that approximate the global

 Geometric metaphors allow complex spatial 
computing problems to be solved with very 
short programs.



Proto is available

http://stpg.csail.mit.edu/proto.html

(or google “MIT Proto”)

● Includes libraries, compiler, kernel, simulator, 
platforms

● Licensed under GPL (w. libc-type exception)

http://stpg.csail.mit.edu/proto.html
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